Suppr超能文献

从脑电信号到脑连接:局灶性癫痫中的致痫网络识别。

From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy.

机构信息

INSERM, U642 Rennes, F-35000, France.

出版信息

Front Syst Neurosci. 2010 Nov 25;4:154. doi: 10.3389/fnsys.2010.00154. eCollection 2010.

Abstract

Epilepsy is a complex neurological disorder characterized by recurring seizures. In 30% of patients, seizures are insufficiently reduced by anti-epileptic drugs. In the case where seizures originate from a relatively circumscribed region of the brain, epilepsy is said to be partial and surgery can be indicated. The success of epilepsy surgery depends on the accurate localization and delineation of the epileptogenic zone (which often involves several structures), responsible for seizures. It requires a comprehensive pre-surgical evaluation of patients that includes not only imaging data but also long-term monitoring of electrophysiological signals (scalp and intracerebral EEG). During the past decades, considerable effort has been devoted to the development of signal analysis techniques aimed at characterizing the functional connectivity among spatially distributed regions over interictal (outside seizures) or ictal (during seizures) periods from EEG data. Most of these methods rely on the measurement of statistical couplings among signals recorded from distinct brain sites. However, methods differ with respect to underlying theoretical principles (mostly coming from the field of statistics or the field of non-linear physics). The objectives of this paper are: (i) to provide an brief overview of methods aimed at characterizing functional brain connectivity from electrophysiological data, (ii) to provide concrete application examples in the context of drug-refractory partial epilepsies, and iii) to highlight some key points emerging from results obtained both on real intracerebral EEG signals and on signals simulated from physiologically plausible models in which the underlying connectivity patterns are known a priori (ground truth).

摘要

癫痫是一种复杂的神经系统疾病,其特征是反复发作。在 30%的患者中,抗癫痫药物对癫痫发作的控制效果不佳。如果癫痫发作起源于大脑的一个相对局限的区域,则称之为部分性癫痫,手术可能是一种选择。癫痫手术的成功取决于对致痫区(通常涉及多个结构)的准确定位和勾画,该区域是引起癫痫发作的根源。这需要对患者进行全面的术前评估,不仅包括影像学数据,还包括对头皮和脑内脑电图等电生理信号的长期监测。在过去几十年中,人们致力于开发信号分析技术,旨在从脑电数据中对间期(癫痫发作间期)或发作期(癫痫发作期间)的空间分布区域之间的功能连接进行特征化。这些方法中的大多数都依赖于对来自不同脑区的信号进行统计耦合的测量。然而,这些方法在理论原理方面存在差异(主要来自统计学或非线性物理学领域)。本文的目的是:(i)简要概述从电生理数据中描述功能脑连接的方法,(ii)提供在耐药性部分性癫痫背景下的具体应用示例,以及(iii)突出从真实脑内 EEG 信号和从具有先验已知的连接模式的生理上合理模型中模拟的信号的结果中得出的一些关键点(ground truth)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2077/2998039/f63367655aaa/fnsys-04-00154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验