Chaovalitwongse W, Iasemidis L D, Pardalos P M, Carney P R, Shiau D-S, Sackellares J C
Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Epilepsy Res. 2005 May;64(3):93-113. doi: 10.1016/j.eplepsyres.2005.03.009.
During the past decade, several studies have demonstrated experimental evidence that temporal lobe seizures are preceded by changes in dynamical properties (both spatial and temporal) of electroencephalograph (EEG) signals. In this study, we evaluate a method, based on chaos theory and global optimization techniques, for detecting pre-seizure states by monitoring the spatio-temporal changes in the dynamics of the EEG signal. The method employs the estimation of the short-term maximum Lyapunov exponent (STL(max)), a measure of the order (chaoticity) of a dynamical system, to quantify the EEG dynamics per electrode site. A global optimization technique is also employed to identify critical electrode sites that are involved in the seizure development. An important practical result of this study was the development of an automated seizure warning system (ASWS). The algorithm was tested in continuous, long-term EEG recordings, 3-14 days in duration, obtained from 10 patients with refractory temporal lobe epilepsy. In this analysis, for each patient, the EEG recordings were divided into training and testing datasets. We used the first portion of the data that contained half of the seizures to train the algorithm, where the algorithm achieved a sensitivity of 76.12% with an overall false prediction rate of 0.17h(-1). With the optimal parameter setting obtained from the training phase, the prediction performance of the algorithm during the testing phase achieved a sensitivity of 68.75% with an overall false prediction rate of 0.15h(-1). The results of this study confirm our previous observations from a smaller number of patients: the development of automated seizure warning devices for diagnostic and therapeutic purposes is feasible and practically useful.
在过去十年中,多项研究已证明实验证据表明,颞叶癫痫发作之前脑电图(EEG)信号的动力学特性(包括空间和时间特性)会发生变化。在本研究中,我们评估了一种基于混沌理论和全局优化技术的方法,通过监测EEG信号动力学的时空变化来检测癫痫发作前状态。该方法采用短期最大李雅普诺夫指数(STL(max))估计,这是一种衡量动态系统秩序(混沌程度)的指标,用于量化每个电极位点的EEG动力学。还采用全局优化技术来识别与癫痫发作发展相关的关键电极位点。本研究的一个重要实际成果是开发了一种自动癫痫预警系统(ASWS)。该算法在从10例难治性颞叶癫痫患者获得的持续3 - 14天的长期连续EEG记录中进行了测试。在该分析中,对于每位患者,EEG记录被分为训练和测试数据集。我们使用包含一半癫痫发作的数据的第一部分来训练算法,该算法在训练时灵敏度达到76.12%,总体错误预测率为0.17h⁻¹。通过从训练阶段获得的最佳参数设置,算法在测试阶段的预测性能灵敏度达到68.75%,总体错误预测率为0.15h⁻¹。本研究结果证实了我们之前在较少患者数量中的观察结果:开发用于诊断和治疗目的的自动癫痫预警设备是可行且实际有用的。