Suppr超能文献

流式细胞术免疫表型数据的神经网络分析

Neural network analysis of flow cytometry immunophenotype data.

作者信息

Kothari R, Cualing H, Balachander T

机构信息

Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, OH 45221-0030, USA.

出版信息

IEEE Trans Biomed Eng. 1996 Aug;43(8):803-10. doi: 10.1109/10.508551.

Abstract

Acute leukemia is one of the leading malignancies in the United States with a mortality rate strongly influenced by the phenotype. This phenotype is based on detection of cell associated antigens normally expressed during leucopoietic differentiation. In this regard, leukemia classified as lymphoid or myeloid by phenotype is also classified as a candidate for the corresponding chemotherapy protocol. Additionally, the subtype of leukemia based on the degree of differentiation and cell maturity influence prognosis, response to treatment, and median survival times. In this paper, we analyze immunophenotype flow cytometry data toward categorization of leukemia into subcategories based on lineage and differentiation antigen expression. Twenty-eight inputs (derived from the mean fluorescence intensity of up to 27 antibodies, and an additional binary input denoting the past diagnosis of leukemia) are used as input to a neural classifier to categorize a total of 170 cases into the lineage and differentiation categories of leukemia. The neural classifier consisted of a feed forward network trained using back propagation. A complexity regulation term (weight decay) was used to improve the generalization performance of the neural classifier. A training error of 0.0% and a generalization error of 10.3% was obtained for categorization based on lineage, while a training error of 0.0% and a generalization error of 10.0% was obtained for categorization based on differentiation. These results indicate that objective classification of multifaceted phenotypes in leukemia can be achieved for analyzing multiparameter data in flow cytometry and further categorization into the prognostic subtypes.

摘要

急性白血病是美国主要的恶性肿瘤之一,其死亡率受表型的影响很大。这种表型基于对造血分化过程中正常表达的细胞相关抗原的检测。在这方面,根据表型分类为淋巴细胞性或髓细胞性的白血病也被归类为相应化疗方案的候选对象。此外,基于分化程度和细胞成熟度的白血病亚型会影响预后、对治疗的反应以及中位生存时间。在本文中,我们分析免疫表型流式细胞术数据,以便根据谱系和分化抗原表达将白血病分类为不同的亚类。28个输入(源自多达27种抗体的平均荧光强度,以及一个表示既往白血病诊断的额外二元输入)被用作神经分类器的输入,以将总共170例病例分类为白血病的谱系和分化类别。神经分类器由一个使用反向传播训练的前馈网络组成。一个复杂度调节项(权重衰减)被用于提高神经分类器的泛化性能。基于谱系分类时,训练误差为0.0%,泛化误差为10.3%;基于分化分类时,训练误差为0.0%,泛化误差为10.0%。这些结果表明,通过分析流式细胞术中的多参数数据以及进一步分类为预后亚型,可以实现白血病多方面表型的客观分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验