Suppr超能文献

利用皮质表面概率图谱检测和绘制异常脑结构

Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces.

作者信息

Thompson P M, MacDonald D, Mega M S, Holmes C J, Evans A C, Toga A W

机构信息

Department of Neurology, UCLA School of Medicine, USA.

出版信息

J Comput Assist Tomogr. 1997 Jul-Aug;21(4):567-81. doi: 10.1097/00004728-199707000-00008.

Abstract

PURPOSE

We have devised, implemented, and tested a technique for creating a comprehensive probabilistic atlas of the human cerebral cortex, based on high-dimensional fluid transformations. The goal of the atlas is to detect and quantify subtle and distributed patterns of deviation from normal cortical anatomy, in a 3D brain image from any given subject.

METHOD

Given a 3D MR image of a new subject, a high-resolution surface representation of the cerebral cortex is automatically extracted. The algorithm then calculates a set of high-dimensional volumetric maps, fluidly deforming this surface into structural correspondence with other cortical surfaces, selected one by one from an anatomic image database. The family of volumetric warps so constructed encodes statistical properties of local anatomical variation across the cortical surface. Additional strategies are developed to fluidly deform the sulcal patterns of different subjects into structural correspondence. A probability space of random transformations, based on the theory of anisotropic Gaussian random fields, is then used to encode information on complex variations in gyral and sulcal topography from one individual to another. A complete system of 256(2) probability density functions is computed to reflect the observed variability in stereotaxic space of the points whose correspondences are found by the warping algorithm. Confidence limits in stereotaxic space are determined for cortical surface points in the new subject's brain.

RESULTS

Color-coded probability maps are generated, which highlight and quantify regional patterns of deformity in the anatomy of new subjects. These maps indicate locally the probability of each anatomic point being as unusually situated, given the distributions of corresponding points in the scans of normal subjects. 3D MRI volumes are analyzed, from subjects with clinically determined Alzheimer disease and age-matched normal subjects.

CONCLUSION

Applications of the random fluid-based probabilistic atlas include the transfer of multisubject 3D functional, vascular, and histologic maps onto a single anatomic template, the mapping of 3D atlases onto the scans of new subjects, and the rapid detection, quantification, and mapping of local shape changes in 3D medical images in disease and during normal or abnormal growth and development.

摘要

目的

我们设计、实施并测试了一种基于高维流体变换创建人类大脑皮层综合概率图谱的技术。该图谱的目标是在来自任何给定受试者的三维脑图像中检测和量化与正常皮层解剖结构的细微和分布式偏差模式。

方法

给定新受试者的三维磁共振图像,自动提取大脑皮层的高分辨率表面表示。然后,该算法计算一组高维体积图,将该表面流体变形为与从解剖图像数据库中逐个选择的其他皮层表面的结构对应。如此构建的体积变形族编码了整个皮层表面局部解剖变异的统计特性。还开发了其他策略,将不同受试者的脑沟模式流体变形为结构对应。基于各向异性高斯随机场理论的随机变换概率空间,随后用于编码从一个个体到另一个个体脑回和脑沟地形复杂变化的信息。计算一个由256(2)个概率密度函数组成的完整系统,以反映通过变形算法找到对应关系的点在立体定向空间中的观测变异性。为新受试者大脑中的皮层表面点确定立体定向空间中的置信限。

结果

生成了颜色编码的概率图,突出并量化了新受试者解剖结构中的区域畸形模式。这些图局部显示了在正常受试者扫描中对应点的分布情况下,每个解剖点异常定位的概率。分析了临床诊断为阿尔茨海默病的受试者和年龄匹配的正常受试者的三维磁共振成像体积。

结论

基于随机流体的概率图谱的应用包括将多受试者三维功能、血管和组织学图谱转移到单个解剖模板上,将三维图谱映射到新受试者的扫描图像上,以及在疾病以及正常或异常生长发育过程中,快速检测、量化和映射三维医学图像中的局部形状变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验