Manning M, Cheng L L, Stoev S, Bankowski K, Przybyiski J, Klis W A, Sawyer W H, Wo N C, Chan W Y
Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43699-0008, USA.
J Pept Sci. 1995 Jan-Feb;1(1):66-79. doi: 10.1002/psc.310010109.
We have investigated the effects of mono-substitutions with the conformationally restricted amino acid, 1,2,3,4 tetrahydroisoquinoline-3-carboxylic acid (Tic) at position 3 in arginine vasopressin (AVP), at positions 2, 3 and 7 in potent non-selective cyclic AVP V2/V1a antagonists, in potent and selective cyclic and linear AVP V1a antagonists, in a potent and selective oxytocin antagonist and in a new potent linear oxytocin antagonist Phaa-D-Tyr(Me)-Ile-Val-Asn-Orn-Pro-Orn-NH2 (10). We report here the solid-phase synthesis of peptide 10 together with the following Tic-substituted peptides: 1. [Tic3]AVP: 2. dICH2)5[D-TIc2]VAVP: 3, d(CH2)5[D-Tyr(Et)2Tic3]VAVP: 4, d(CH2)5[Tic2Ala-NH2(9)]AVP: 5. d(CH2)5[Tyr]Me)2.Tic3,Ala-NH2(9)]AVP: 6. d(CH2)5 [Tyr(Me)2,Tic7]AVP: 7, Phaa-D-Tyr(Me)-Phe-Gln-Asn-Lys-Tic-Arg-NH2: 8, desGly-NH2,d[CH2]5[Tic2,Thr4]OVT: 9. desGly-NH2d(CH2)5[Tyr(Me)2Thr4, Tic7[OVT; 11, Phaa-D-Tic-Ile-Val-Asn-Orn-Pro-Orn-NH2, using previously described methods. The protected precursors were synthesized by the solid-phase method, cleaved, purified and deblocked with sodium in liquid ammonia to give the free peptides 1-11 which were purified by methods previously described. Peptides 1-11 were examined for agonistic and antagonistic potency in oxytocic (in vitro, without Mg2+) and AVP antidiuretic (V2-receptor) and vasopressor (V1a-receptor) assays. Tic3 substitution in AVP led to drastic losses of V2, V1a and oxytocic agonistic activities in peptide 1, L- and D-Tic2 substitutions led to drastic losses of anti-V2/anti-V1a and anti-oxytocic potencies in peptides 2, 4, 8 and 11 (peptide 2 retained substantial anti-oxytocic potency; pA2 = 7.25 +/- 0.025). Whereas Tic3 substitution in the selective V1a antagonist d(CH2)5[Tyr(Me)2,Ala-NH2(9)]AVP(C) led to a drastic reduction in anti-V1a potency (from anti-V1a pA2 8.75 to 6.37 for peptide 5, remarkably, Tic3 substitution in the V2/V1a antagonist d(CH2)5(D-Tyr(Et)2]VAVP(B) led to full retention of anti-V2 potency and a 95% reduction in anti-V1a potency. With an anti-V2 pA2 = 7.69 +/- 0.05 and anti-V1a pA2 = 6.95 +/- 0.03. d(CH2)5[D-Tyr(Et)2, Tic3]VAVP exhibits a 13-fold gain in anti-V2/anti-V1a selectivity compared to (B). Tic7 substitutions are very well tolerated in peptides 6, 7 and 9 with excellent retention of the characteristic potencies of the parent peptides. The findings on the effects of Tic3 substitutions reported here may provide promising leads to the design of more selective and possibly orally active V2 antagonists for use as pharmacological tools and as therapeutic clinical agents for the treatment of the syndrome of the inappropriate secretion of antidiuretic hormone (SIADH).
我们研究了用构象受限氨基酸1,2,3,4 - 四氢异喹啉 - 3 - 羧酸(Tic)在精氨酸加压素(AVP)的3位进行单取代,在强效非选择性环AVP V2/V1a拮抗剂的2、3和7位进行单取代,在强效和选择性环及线性AVP V1a拮抗剂中进行单取代,在强效和选择性催产素拮抗剂以及新型强效线性催产素拮抗剂Phaa - D - Tyr(Me)-Ile-Val-Asn-Orn-Pro-Orn-NH2(10)中的影响。我们在此报告肽10以及以下Tic取代肽的固相合成:1. [Tic3]AVP;2. d(CH2)5[D - Tic2]VAVP;3. d(CH2)5[D - Tyr(Et)2Tic3]VAVP;4. d(CH2)5[Tic2Ala - NH2(9)]AVP;5. d(CH2)5[Tyr(Me)2,Tic3,Ala - NH2(9)]AVP;6. d(CH2)5 [Tyr(Me)2,Tic7]AVP;7. Phaa - D - Tyr(Me)-Phe-Gln-Asn-Lys-Tic-Arg-NH2;8. desGly - NH2,d(CH2)5[Tic2,Thr4]OVT;9. desGly - NH2d(CH2)5[Tyr(Me)2Thr4, Tic7]OVT;11. Phaa - D - Tic-Ile-Val-Asn-Orn-Pro-Orn-NH2,采用先前描述的方法。受保护的前体通过固相方法合成,裂解、纯化并用液氨中的钠脱保护,得到游离肽1 - 11,这些肽通过先前描述的方法进行纯化。在催产素(体外,无Mg2+)、AVP抗利尿(V2受体)和升压(V1a受体)测定中检测了肽1 - 11的激动和拮抗效力。AVP中的Tic3取代导致肽1中V2、V1a和催产素激动活性的急剧丧失,L - 和D - Tic2取代导致肽2、4、8和11中抗V2/抗V1a和抗催产素效力的急剧丧失(肽2保留了相当大的抗催产素效力;pA2 = 7.25±0.025)。而选择性V