Yu X, Alpert N M, Lewandowski E D
Nuclear Magnetic Resonance Center, Massachusetts General Hospital, Boston, USA.
Am J Physiol. 1997 Jun;272(6 Pt 1):C2037-48. doi: 10.1152/ajpcell.1997.272.6.C2037.
Measurements of oxidative metabolism in the heart from dynamic 13C nuclear magnetic resonance (NMR) spectroscopy rely on 13C turnover in the NMR-detectable glutamate pool. A kinetic model was developed for the analysis of isotope turnover to determine tricarboxylic acid cycle flux (VTCA) and the interconversion rate between alpha-ketoglutarate and glutamate (F1) by fitting the model to NMR data of glutamate enrichment. The results of data fitting are highly reproducible when the noise level is within 10%, making this model applicable to single or grouped experiments. The values for VTCA and F1 were unchanged whether obtained from least-squares fitting of the model to mean experimental enrichment data with standard deviations in the cost function (VTCA = 10.52 mumol.min-1.g dry wt-1, F1 = 10.67 mumol.min-1.g dry wt-1) or to the individual enrichment values for each heart with the NMR noise level in the cost function (VTCA = 10.67 mumol.min-1.g dry wt-1, F1 = 10.18 mumol.min-1.g dry wt-1). Computer simulation and theoretical analysis indicate that glutamate enrichment kinetics are insensitive to the fractional enrichment of acetyl-CoA and changes in small intermediate pools (< 1 mumol/g dry wt). Therefore, high-resolution NMR analysis of tissue extracts and biochemical assays for intermediates at low concentrations are unnecessary. However, a high correlation between VTCA and F1 exists, as anticipated from competition for alpha-ketoglutarate, which indicates the utility of introducing independent experimental constraints into the data fitting for accurate quantification.
利用动态13C核磁共振(NMR)波谱法测量心脏中的氧化代谢,依赖于NMR可检测的谷氨酸池中的13C周转。通过将模型与谷氨酸富集的NMR数据拟合,建立了一个动力学模型,用于分析同位素周转,以确定三羧酸循环通量(VTCA)和α-酮戊二酸与谷氨酸之间的相互转化率(F1)。当噪声水平在10%以内时,数据拟合结果具有高度可重复性,使得该模型适用于单组或分组实验。无论从模型对成本函数中具有标准偏差的平均实验富集数据进行最小二乘拟合(VTCA = 10.52 μmol·min-1·g干重-1,F1 = 10.67 μmol·min-1·g干重-1),还是对成本函数中具有NMR噪声水平的每个心脏的个体富集值进行拟合(VTCA = 10.67 μmol·min-1·g干重-1,F1 = 10.18 μmol·min-1·g干重-1),VTCA和F1的值均保持不变。计算机模拟和理论分析表明,谷氨酸富集动力学对乙酰辅酶A的分数富集和小中间池(<1 μmol/g干重)的变化不敏感。因此,无需对组织提取物进行高分辨率NMR分析以及对低浓度中间体进行生化测定。然而,正如从对α-酮戊二酸的竞争所预期的那样,VTCA和F1之间存在高度相关性,这表明在数据拟合中引入独立的实验约束以进行准确量化是有用的。