Suppr超能文献

In vivo processing of the precursor of the major exoglucanase by KEX2 endoprotease in the Saccharomyces cerevisiae secretory pathway.

作者信息

Basco R D, Cueva R, Andaluz E, Larriba G

机构信息

Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.

出版信息

Biochim Biophys Acta. 1996 Jan 10;1310(1):110-8. doi: 10.1016/0167-4889(95)00156-5.

Abstract

We have established the main post-translational modification of the major exoglucanase of Saccharomyces cerevisiae as the enzyme progresses through the secretory pathway. The protein portion of the enzyme accumulated by sec18 cells was about 2 kDa larger than that of the secreted enzyme. This precursor (form A) was stable when maintained in the endoplasmic reticulum but was processed to the mature form (form B) before the block imposed by the sec7 mutation. Sec7 cells, when incubated at 37 degrees C, accumulated form B first, but upon prolonged incubation, form A was preferentially accumulated. When the supply of newly synthesized exoglucanase was prevented by the addition of cycloheximide, the accumulated A was transformed into B in the presence of altered Sec7p that still prevented secretion. Conversion of A into B was prevented in the double mutant sec7 kex2-1, indicating that Kex2p is central to the in vivo processing. Consistent with this, a KEX2 deletion mutant secreted form A exclusively. Conversion of A into B was also prevented in sec7 cells by the presence of dinitrophenol, a poison that depletes ATP levels, indicating that processing is dependent upon intracellular transport which involves ER --> Golgi and/or, at least, one intra-Golgi step(s). It follows that this transport step(s) is independent of functional Sec7p.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验