Floren L C, Bekersky I, Benet L Z, Mekki Q, Dressler D, Lee J W, Roberts J P, Hebert M F
Department of Biopharmaceutical Sciences, University of California, San Francisco, USA.
Clin Pharmacol Ther. 1997 Jul;62(1):41-9. doi: 10.1016/S0009-9236(97)90150-8.
To quantitate the effect of ketoconazole, an azole antifungal agent and potent inhibitor of CYP3A4 and P-glycoprotein, on the bioavailability of tacrolimus, a substrate of the CYP3A system and of P-glycoprotein.
The pharmacokinetics of tacrolimus were studied in six healthy volunteers (two women and four men) in a four-dose study after each received single doses of tacrolimus alone (0.1 mg/kg orally and 0.025 mg/kg intravenously) and with coadministered ketoconazole (200 mg orally at bedtime for 12 days). The dose of tacrolimus was reduced during the ketoconazole phase (0.04 mg/kg orally; 0.01 mg/kg intravenously). Ketoconazole and tacrolimus doses were separated by approximately 10 hours. Whole blood tacrolimus concentrations were determined by enzyme-linked immunosorbent assay. Estimated pharmacokinetic parameters in whole blood (mean +/- SD) before and with ketoconazole were calculated with noncompartmental techniques.
Coadministration of ketoconazole did not consistently affect tacrolimus clearance (55.6 +/- 16.7 ml/hr/kg versus 42.5 +/- 7.6 ml/hr/kg), and steady-state volume of distribution was unchanged (0.99 +/- 0.26 L/kg versus 0.93 +/- 0.25 L/kg). However, a significant increase in tacrolimus bioavailability (14% +/- 5% versus 30% +/- 8%; p < 0.01) was observed with coadministered ketoconazole. Hepatic bioavailability was unchanged by the presence of ketoconazole (96% +/- 1% versus 97% +/- 1%).
Because ketoconazole did not alter hepatic bioavailability and because 10 hours separated administration times of the drugs, it appears that the marked increase in tacrolimus bioavailability can be explained by ketoconazole having a local inhibitory effect on tacrolimus gut metabolism or on intestinal P-glycoprotein activity.
定量研究酮康唑(一种唑类抗真菌药,也是细胞色素P450 3A4(CYP3A4)和P-糖蛋白的强效抑制剂)对他克莫司(CYP3A系统和P-糖蛋白的底物)生物利用度的影响。
在一项四剂量研究中,对6名健康志愿者(2名女性和4名男性)的他克莫司药代动力学进行了研究。每位志愿者分别单独接受单剂量的他克莫司(口服0.1mg/kg,静脉注射0.025mg/kg),以及与酮康唑联合给药(睡前口服200mg,共12天)。在酮康唑给药阶段,他克莫司的剂量减少(口服0.04mg/kg;静脉注射0.01mg/kg)。酮康唑和他克莫司的给药时间间隔约10小时。采用酶联免疫吸附测定法测定全血他克莫司浓度。用非房室分析技术计算在服用酮康唑之前和期间全血中的药代动力学参数(平均值±标准差)。
联合使用酮康唑并没有持续影响他克莫司的清除率(55.6±16.7ml/(hr·kg)对42.5±7.6ml/(hr·kg)),稳态分布容积也没有变化(0.99±0.26L/kg对0.93±0.25L/kg)。然而,联合使用酮康唑时,他克莫司的生物利用度显著增加(14%±5%对30%±8%;p<0.01)。酮康唑的存在并未改变肝脏生物利用度(96%±1%对97%±1%)。
由于酮康唑没有改变肝脏生物利用度,且两种药物的给药时间间隔为10小时,因此他克莫司生物利用度的显著增加似乎可以解释为酮康唑对他克莫司肠道代谢或肠道P-糖蛋白活性具有局部抑制作用。