Suppr超能文献

使用人工神经网络检测咽壁振动

Pharyngeal wall vibration detection using an artificial neural network.

作者信息

Behbehani K, Lopez F, Yen F C, Lucas E A, Burk J R, Axe J P, Kamangar F

机构信息

Biomedical Engineering, University of Texas, Arlington, USA.

出版信息

Med Biol Eng Comput. 1997 May;35(3):193-8. doi: 10.1007/BF02530037.

Abstract

An artificial-neural-network-based detector of pharyngeal wall vibration (PWV) is presented. PWV signals the imminent occurrence of obstructive sleep apnoea (OSA) in adults who suffer from OSA syndrome. Automated detection of PWV is very important in enhancing continuous positive airway pressure (CPAP) therapy by allowing automatic adjustment of the applied airway pressure by a procedure called automatic positive airway pressure (APAP) therapy. A network with 15 inputs, one output, and two hidden layers, each with two Adaline-nodes, is used as part of a PWV detection scheme. The network is initially trained using nasal mask pressure data from five positively diagnosed OSA patients. The performance of the ANN-based detector is evaluated using data from five different OSA patients. The results show that on the average it correctly detects the presence of PWV events at a rate of approximately 92% and correctly distinguishes normal breaths approximately 98% of the time. Further, the ANN-based detector accuracy is not affected by the pressure level required for therapy.

摘要

本文介绍了一种基于人工神经网络的咽壁振动(PWV)检测器。PWV是患有阻塞性睡眠呼吸暂停(OSA)综合征的成年人即将发生阻塞性睡眠呼吸暂停(OSA)的信号。PWV的自动检测对于通过一种称为自动气道正压(APAP)治疗的程序自动调整所施加的气道压力来增强持续气道正压(CPAP)治疗非常重要。一个具有15个输入、1个输出和两个隐藏层(每个隐藏层有两个Adaline节点)的网络被用作PWV检测方案的一部分。该网络最初使用来自五名确诊为OSA的患者的鼻罩压力数据进行训练。基于人工神经网络的检测器的性能使用来自五名不同OSA患者的数据进行评估。结果表明,平均而言,它以约92%的速率正确检测到PWV事件的存在,并且在约98%的时间内正确区分正常呼吸。此外,基于人工神经网络的检测器的准确性不受治疗所需压力水平的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验