Kleene S J
Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, Ohio 45267-0521, USA.
Biophys J. 1997 Aug;73(2):1110-7. doi: 10.1016/S0006-3495(97)78143-8.
It is desirable that sensory systems use high-gain, low-noise amplification to convert weak stimuli into detectable signals. Here it is shown that a pair of receptor currents underlying vertebrate olfactory transduction constitutes such a scheme. The primary receptor current is an influx of Na+ and Ca2+ through cAMP-gated channels in the olfactory cilia. External divalent cations improve the signal-to-noise properties of this current, reducing the mean current and the current variance. As Ca2+ enters the cilium, it gates Cl- channels, activating a secondary depolarizing receptor current. This current amplifies the primary current, but introduces little additional noise. The system of two currents plus divalent cations in the mucus produces a large receptor current with very low noise.
感觉系统采用高增益、低噪声放大将微弱刺激转化为可检测信号是很理想的。本文表明,脊椎动物嗅觉转导过程中的一对受体电流构成了这样一种机制。主要的受体电流是Na+和Ca2+通过嗅觉纤毛中的环磷酸腺苷(cAMP)门控通道内流。外部二价阳离子改善了该电流的信噪比特性,降低了平均电流和电流方差。当Ca2+进入纤毛时,它打开Cl-通道,激活次级去极化受体电流。该电流放大了初级电流,但几乎不引入额外噪声。黏液中两种电流加上二价阳离子的系统产生了具有极低噪声的大受体电流。