Kleene S J, Cejtin H C
Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, Ohio 45267-0521.
Anal Biochem. 1994 Nov 1;222(2):310-4. doi: 10.1006/abio.1994.1497.
Determining ionic concentrations in buffered solutions usually reduces to solving a set of simultaneous polynomial equations. Mathematica software offers a convenient method for doing this. Using buffering of Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) as an example, we provide a Mathematica script to estimate the apparent association constant. A second example shows how to calculate free ion concentrations when two ligands (Ca2+ and Mg2+) compete for one chelator (EGTA). Finally, the concentrations of all species are determined in a complex mixture containing Ca2+, EGTA, and calmodulin, a protein with four Ca(2+)-binding sites. Modifying the examples presented should allow analysis of most practical buffering problems.
测定缓冲溶液中的离子浓度通常归结为求解一组联立多项式方程。Mathematica软件提供了一种便捷的方法来解决这个问题。以乙二醇双(β-氨基乙醚)-N,N,N',N'-四乙酸(EGTA)对Ca2+的缓冲作用为例,我们提供了一个Mathematica脚本以估算表观缔合常数。第二个例子展示了如何在两种配体(Ca2+和Mg2+)竞争一种螯合剂(EGTA)时计算游离离子浓度。最后,在含有Ca2+、EGTA和钙调蛋白(一种具有四个Ca(2+)结合位点的蛋白质)的复杂混合物中确定所有物种的浓度。修改所给出的例子应该可以分析大多数实际的缓冲问题。