Suppr超能文献

Changes in cell surface glycosylation in alpha1,3-galactosyltransferase knockout and alpha1,2-fucosyltransferase transgenic mice.

作者信息

Shinkel T A, Chen C G, Salvaris E, Henion T R, Barlow H, Galili U, Pearse M J, d'Apice A J

机构信息

Immunology Research Centre, Department of Clinical Immunology, St Vincent's Hospital, Fitzroy, Victoria, Australia.

出版信息

Transplantation. 1997 Jul 27;64(2):197-204. doi: 10.1097/00007890-199707270-00003.

Abstract

BACKGROUND

Inactivation of the alpha1,3-galactosyltransferase (GalT) gene by homologous recombination (knockout [KO] mice) and competition for the enzyme's N-acetyllactosamine substrate by transgenically expressed alpha1,2-fucosyltransferase (H-transferase) are two genetic approaches to elimination of the Gal alpha1,3Gal (alphaGal) epitope, which is the major xenoantigen in pigs against which humans have preformed antibodies. Such genetic manipulations often have unpredictable results.

METHODS

A panel of 19 selected lectins was used to characterize the changes in cell surface glycosylation in GalT KO and H-transferase transgenic mice, compared with nontransgenic littermate controls.

RESULTS

GalT KO mice showed complete elimination of the alphaGal epitope, as reported previously. Surprisingly, however, this was associated with only a modest increase in N-acetyllactosamine residues and had little other effect on the pattern of lectin binding. In contrast, the pattern of lectin binding to H-transferase transgenic mouse cells was more profoundly disturbed and indicated, in addition to the expected expression of H substance and suppression of the alphaGal epitope, that there was a marked reduction in alpha2,3-sialylation and exposure of the normally cryptic antigens, sialylated Tn and Forssman antigens. Similar changes in lectin reactivity with porcine aortic endothelial cells were induced by neuraminidase treatment.

CONCLUSIONS

Lectins were able to bind underlying carbohydrate structures (sialylated Tn and Forssman antigens) that are normally cryptic antigens on H-transferase transgenic mouse spleen and cardiac endothelial cells, probably as a consequence of the reduction in the electronegativity of the cell surface due to reduced sialylation. As humans have preformed anti-Tn and anti-Forssman antibodies, it is possible that these structures may become targets of the xenograft rejection process, including hyperacute rejection.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验