Suppr超能文献

恶性疟原虫磷酸丙糖异构酶:晶体结构为抗疟药物设计提供见解。

Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design.

作者信息

Velanker S S, Ray S S, Gokhale R S, Suma S, Balaram H, Balaram P, Murthy M R

机构信息

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.

出版信息

Structure. 1997 Jun 15;5(6):751-61. doi: 10.1016/s0969-2126(97)00230-x.

Abstract

BACKGROUND

Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 A resolution.

RESULTS

The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences. In most TIMs the residue at position 183 is a glutamate but in PfTIM it is a leucine. This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM.

CONCLUSIONS

Although the human and Plasmodium enzymes share 42% amino acid sequence identity, several key differences suggest that PfTIM may turn out to be a potential drug target. We have identified a region which may be responsible for binding PfTIM to cytoskeletal elements or the band 3 protein of erythrocytes; attachment to the erythrocyte membrane may subsequently lead to the extracellular exposure of parts of the protein. This feature may be important in view of a recent report that patients suffering from P. falciparum malaria mount an antibody response to TIM leading to prolonged hemolysis. A second approach to drug design may be provided by the mutation of the largely conserved residue (Ser96) to phenylalanine in PfTIM. This difference may be of importance in designing specific active-site inhibitors against the enzyme. Finally, specific inhibition of PfTIM subunit assembly might be possible by targeting Cys13 at the dimer interface. The crystal structure of PfTIM provides a framework for new therapeutic leads.

摘要

背景

由恶性疟原虫引起的疟疾是一个主要的公共卫生问题。该寄生虫缺乏功能性的三羧酸循环,糖酵解是其唯一的能量来源。尽管寄生虫酶被认为是潜在的抗疟药物靶点,但对其结构生物学了解甚少。在此,我们报告了恶性疟原虫磷酸丙糖异构酶(TIM)在2.2埃分辨率下的晶体结构。

结果

以锥虫TIM的结构为起始模型,通过分子置换法确定了在大肠杆菌中表达的恶性疟原虫TIM(PfTIM)的晶体结构。PfTIM结构与其他TIM结构,特别是人类TIM结构的比较揭示了一些差异。在大多数TIM中,第183位的残基是谷氨酸,但在PfTIM中是亮氨酸。这个亮氨酸残基完全暴露,连同周围带正电荷的区域,可能负责将TIM与红细胞膜结合。另一个有趣的特征是在PfTIM的二聚体界面处出现了一个半胱氨酸残基(Cys13),而在人类TIM中该残基是甲硫氨酸。最后,人类TIM靠近活性位点的第96位残基(Ser96)在PfTIM中被苯丙氨酸取代。

结论

尽管人类和疟原虫的酶具有42%的氨基酸序列同一性,但一些关键差异表明PfTIM可能是一个潜在的药物靶点。我们确定了一个可能负责将PfTIM与细胞骨架成分或红细胞带3蛋白结合的区域;与红细胞膜的附着可能随后导致该蛋白部分区域的细胞外暴露。鉴于最近的一份报告称,恶性疟原虫疟疾患者对TIM产生抗体反应导致溶血延长,这一特征可能很重要。PfTIM中一个高度保守的残基(Ser96)突变为苯丙氨酸可能为药物设计提供另一种方法。这种差异在设计针对该酶的特异性活性位点抑制剂时可能很重要。最后,通过靶向二聚体界面处的Cys13,可能特异性抑制PfTIM亚基组装。PfTIM的晶体结构为新的治疗线索提供了一个框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验