Suppr超能文献

Does transmembrane communication through gap junctions enable stem cells to overcome stromal inhibition?

作者信息

Rosendaal M, Mayen A, de Koning A, Dunina-Barkovskaya T, Krenács T, Ploemacher R

机构信息

Department of Anatomy and Developmental Biology, University College London, UK.

出版信息

Leukemia. 1997 Aug;11(8):1281-9. doi: 10.1038/sj.leu.2400744.

Abstract

When long-term bone marrow cultures are treated with Amphotericin B (AB) their haemopoietic stem cells (HSC) cease growing. This is not a toxic effect of the drug because once that is removed, HSC resume clonal growth and, given sufficient time, form as many cells as HSC in untreated cultures. Amphotericin B-evoked inhibition of blood formation is probably mediated by transmembrane communication between HSC and stroma for the following reasons: (1) AB does not stop HSC forming colony-forming units in culture (CFU-c) when HSC are separated from stroma by culturing them on Transwell inserts above the stroma. (2) Conditioned media (CM) from AB-containing or normal long-term cultures (LTC) does not inhibit normal marrow cells forming colonies in semi-solid cultures without stromal underlays. (3) AB itself does not stop bone marrow cells forming colonies in semi-solid cultures nor does it stop stromal cells growing or prejudice their long-term maintenance. (4) Furthermore, growing stromal cells with AB does not alter the number of transcripts they form for cytokines and chemokines to any large extent, including TGF-beta1. We have extensive, though circumstantial, evidence that gap junctions are involved in this communication. AB only stopped the growth of HSC when we blocked intercellular communication via gap junctions (GJIC) (tested by micro-injection of lucifer yellow). Lipophilic compounds that do not affect GJIC had no effect on the growth of HSC. Looking at a series of stromal cell lines from foetal liver and neonatal bone marrow we found that extensive GJIC correlated with stromal support of the late-appearing clones formed by primitive HSC (week 3-5 cobblestone-area forming cells, CAFC). We propose that the proliferation of HSC is regulated via transmembrane communication between stromal and HSC. Our findings support the proposal that gap junctions play a part in this stromal-dependent regulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验