Suppr超能文献

Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency.

作者信息

van der Molen E F, Hiipakka M J, van Lith-Zanders H, Boers G H, van den Heuvel L P, Monnens L A, Blom H J

机构信息

Department of Paediatrics, University Hospital St. Radboud, Nijmegen, The Netherlands.

出版信息

Thromb Haemost. 1997 Aug;78(2):827-33.

PMID:9268179
Abstract

Homocystinuria due to cystathionine beta-synthase (CS) deficiency is the most common inborn error of methionine metabolism. Patients with CS-deficiency have an extremely high risk of vascular disease. The underlying mechanism is still unsolved. Dysfunction of endothelial cells could be the trigger in the formation of atherosclerosis and thrombosis. Therefore, differences in cell function were studied between normal and CS-deficient human umbilical endothelial cells (HUVECs). Total homocysteine (tHcy) concentrations in culture media as a measure of homocysteine export increased in all cell lines, including the cell line with CS-deficiency, with constant amounts of approximately 2.5 microM every 24 h. von Willebrand factor (vWF), tissue plasminogen activator (tPA) and plasminogen activator inhibitor (PAI-1) in culture media were used as markers of endothelial function and increased also with progression of culture time. The effects of additions of folate, vitamin B6 and methionine to the culture medium were studied. The homocysteine export and the markers of endothelial function did not differ between the control and the CS-deficient HUVECs under various test conditions. These data show that CS-deficient endothelial cells have normal homocysteine export and normal endothelial cell function. In CS-deficient patients the very high blood levels of homocysteine, probably due to deficient CS function in liver and kidney, seems to be the hazardous factor to endothelial cells, thus promoting atherosclerosis and thrombosis in CS-deficient patients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验