Crauwels Marion, Donaton Monica C V, Pernambuco Maria Beatriz, Winderickx Joris, de Winde Johannes H, Thevelein Johan M
Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium.
Microbiology (Reading). 1997 Aug;143 ( Pt 8):2627-2637. doi: 10.1099/00221287-143-8-2627.
In cells of the yeast Saccharomyces cerevisiae, trehalase activation, repression of CTT1 (catalase), SSA3 (Hsp70) and other STRE-controlled genes, feedback inhibition of cAMP synthesis and to some extent induction of ribosomal protein genes is controlled by the Ras-adenylate cyclase pathway and by the fermentable-growth-medium-induced pathway (FGM pathway). When derepressed cells are shifted from a non-fermentable carbon source to glucose, the Ras-adenylate cyclase pathway is transiently activated while the FGM pathway triggers a more lasting activation of the same targets when the cells become glucose-repressed. Activation of the FGM pathway is not mediated by cAMP but requires catalytic activity of cAMP-dependent protein kinase (cAPK; Tpk1, 2 or 3). This study shows that elimination of Sch9, a protein kinase with homology to the catalytic subunits of cAPK, affects all target systems in derepressed cells in a way consistent with higher activity of cAPK in vivo. In vitro measurements with trehalase and kemptide as substrates confirmed that elimination of sch9 enhances cAPK activity about two- to threefold, in both the absence and presence of cAMP. In vivo it similarly affected the basal and final level but not the extent of the glucose-induced responses in derepressed cells. The reduction in growth rate caused by deletion of SCH9 is unlikely to be responsible for the increase in cAPK activity since reduction of growth rate generally leads to lower cAPK activity in yeast. On the other hand, deletion of SCH9 abolished the responses of the protein kinase A targets in glucose-repressed cells. Re-addition of nitrogen to cells starved for nitrogen in the presence of glucose failed to trigger activation of trehalase, caused strongly reduced and aberrant repression of CTT1 and SSA3, and failed to induce the upshift in RPL25 expression. From these results three conclusions can be drawn: (1) Sch9 either directly or indirectly reduces the activity of protein kinase A; (2) Sch9 is not required for glucose-induced activation of the Ras-adenylate cyclase pathway; and (3) Sch9 is required for nitrogen-induced activation of the FGM pathway. The latter indicates that Sch9 might be the target of the FGM pathway rather than cAPK itself.
在酿酒酵母细胞中,海藻糖酶激活、CTT1(过氧化氢酶)、SSA3(热休克蛋白70)及其他受应激反应元件(STRE)调控基因的抑制、环磷酸腺苷(cAMP)合成的反馈抑制以及核糖体蛋白基因在一定程度上的诱导,均受Ras - 腺苷酸环化酶途径和可发酵生长培养基诱导途径(FGM途径)的控制。当去阻遏细胞从非发酵碳源转移至葡萄糖时,Ras - 腺苷酸环化酶途径会被短暂激活,而当细胞受到葡萄糖阻遏时,FGM途径会触发对相同靶标的更持久激活。FGM途径的激活不是由cAMP介导的,而是需要依赖cAMP的蛋白激酶(cAPK;Tpk1、2或3)的催化活性。本研究表明,消除与cAPK催化亚基具有同源性的蛋白激酶Sch9,会以一种与体内cAPK更高活性相一致的方式影响去阻遏细胞中的所有靶标系统。以海藻糖酶和肯普肽为底物进行的体外测量证实,在有无cAMP的情况下,消除sch9都会使cAPK活性提高约两到三倍。在体内,它同样影响基础水平和最终水平,但不影响去阻遏细胞中葡萄糖诱导反应的程度。由于生长速率的降低通常会导致酵母中cAPK活性降低,因此SCH9缺失导致的生长速率降低不太可能是cAPK活性增加的原因。另一方面,SCH9的缺失消除了葡萄糖阻遏细胞中蛋白激酶A靶标的反应。在葡萄糖存在的情况下,向缺氮饥饿的细胞重新添加氮未能触发海藻糖酶的激活,导致CTT1和SSA3的抑制强烈降低且异常,并且未能诱导RPL25表达上调。从这些结果可以得出三个结论:(1)Sch9直接或间接降低蛋白激酶A的活性;(2)葡萄糖诱导的Ras - 腺苷酸环化酶途径的激活不需要Sch9;(3)FGM途径的氮诱导激活需要Sch9。后者表明Sch9可能是FGM途径的靶标,而不是cAPK本身。