Steriade M
Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, Canada.
Cereb Cortex. 1997 Sep;7(6):583-604. doi: 10.1093/cercor/7.6.583.
The cerebral cortex and thalamus constitute a unified oscillatory machine displaying different spontaneous rhythms that are dependent on the behavioral state of vigilance. In vivo multi-site recordings from a variety of neocortical areas and related thalamic nuclei in cat, including dual simultaneous intracellular recordings, demonstrate that corticofugal volleys are effective in synchronizing fast (20-50 Hz) and low-frequency (< 15 Hz) oscillations in thalamocortical networks, characterizing activated and de-afferented states. (i) Fast spontaneous oscillations depend on the depolarization of thalamic and cortical cells and appear in a sustained manner during waking and REM sleep. Corticothalamic neurons, discharging high-frequency (400 Hz) spike-bursts at 30-40 Hz, are good candidates to synchronize fast oscillations in reentrant thalamocortical loops. Weakly synchronized, fast spontaneous oscillations may be reset and become robustly coherent after relevant sensory stimuli in waking or internal signals during the dreaming state. (ii) During quiescent sleep, the long-range synchronization of brain electrical activity results from synchronous hyperpolarizations in forebrain neurons. The corticothalamic inputs during the depolarizing component of the slow oscillation (< 1 Hz) are effective in grouping the thalamic-generated sleep rhythms (spindles at 7-14 Hz and delta at 1-4 Hz) into complex wave-sequences. These inputs also control the shape of spindles, and favor the long-range synchronization and nearly simultaneous appearance of spindles. (iii) The cortical control of thalamic activity is also demonstrated in spike-wave-seizures developing from sleep patterns. More than half of thalamocortical neurons are silent during spike-wave seizures, being tonically hyperpolarized, and display IPSPs (closely related to the paroxysmal depolarizing shifts of cortical cells) that are determined by the pattern of activities in thalamic reticular cells. All these data congruently show the power of cortical control upon thalamic oscillators.
大脑皮层和丘脑构成了一个统一的振荡机制,呈现出依赖于警觉行为状态的不同自发节律。在猫的各种新皮层区域和相关丘脑核团进行的体内多部位记录,包括双同步细胞内记录,表明皮质传出冲动在使丘脑皮质网络中的快速(20 - 50赫兹)和低频(<15赫兹)振荡同步方面是有效的,这是激活状态和传入缺失状态的特征。(i)快速自发振荡依赖于丘脑和皮质细胞的去极化,在清醒和快速眼动睡眠期间持续出现。皮质丘脑神经元以30 - 40赫兹的频率发放高频(400赫兹)棘波爆发,是使折返性丘脑皮质环路中的快速振荡同步的良好候选者。在清醒时相关感觉刺激或做梦状态下的内部信号之后,微弱同步的快速自发振荡可能会被重置并变得高度相干。(ii)在安静睡眠期间,脑电活动的长程同步源于前脑神经元的同步超极化。慢振荡(<1赫兹)去极化成分期间的皮质丘脑输入有效地将丘脑产生的睡眠节律(7 - 14赫兹的纺锤波和1 - 4赫兹的δ波)分组为复杂的波序列。这些输入还控制纺锤波的形状,并有利于纺锤波的长程同步和几乎同时出现。(iii)从睡眠模式发展而来的棘波 - 慢波癫痫发作也证明了皮质对丘脑活动的控制。在棘波 - 慢波癫痫发作期间,超过一半的丘脑皮质神经元处于沉默状态,呈强直性超极化,并显示由丘脑网状细胞的活动模式决定的抑制性突触后电位(与皮质细胞的阵发性去极化偏移密切相关)。所有这些数据一致表明皮质对丘脑振荡器的控制能力。