Suppr超能文献

Inhibition of tetrahydrobiopterin biosynthesis impairs endothelium-dependent relaxations in canine basilar artery.

作者信息

Kinoshita H, Milstien S, Wambi C, Katusic Z S

机构信息

Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA.

出版信息

Am J Physiol. 1997 Aug;273(2 Pt 2):H718-24. doi: 10.1152/ajpheart.1997.273.2.H718.

Abstract

Tetrahydrobiopterin is an essential cofactor in biosynthesis of nitric oxide. The present study was designed to determine the effect of decreased intracellular tetrahydrobiopterin levels on endothelial function of isolated cerebral arteries. Blood vessels were incubated for 6 h in minimum essential medium (MEM) in the presence or absence of a GTP cyclohydrolase I inhibitor, 2,4-diamino-6-hydroxypyrimidine (DAHP, 10(-2) M). Rings with and without endothelium were suspended for isometric force recording in the presence of a cyclooxygenase inhibitor, indomethacin (10(-5) M). In arteries with endothelium, DAHP significantly reduced intracellular levels of tetrahydrobiopterin. DAHP in combination with a precursor of the salvage pathway of tetrahydrobiopterin biosynthesis, sepiapterin (10(-4) M), not only restored but increased levels of tetrahydrobiopterin above control values. In DAHP-treated arteries, endothelium-dependent relaxations to bradykinin (10(-10)-10(-6) M) or calcium ionophore A23187 (10(-9)-10(-6) M) were significantly reduced, whereas endothelium-independent relaxations to a nitric oxide donor, 3-morpholinosydnonimine (10(-9)-10(-4) M), were not affected. When DAHP-treated arteries with endothelium were incubated with sepiapterin (10(-4) M) or superoxide dismutase (150 U/ml), relaxations to bradykinin and A23187 were restored to control levels. In contrast, superoxide dismutase did not affect endothelium-dependent relaxations in arteries incubated in MEM. A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (10(-4) M), abolished relaxations to bradykinin or A23187 in control arteries and in DAHP-treated arteries. These studies demonstrate that in cerebral arteries, decreased intracellular levels of tetrahydrobiopterin can reduce endothelium-dependent relaxations. Production of superoxide anions during activation of dysfunctional endothelial nitric oxide synthase appears to be responsible for the impairment of endothelial function.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验