Suppr超能文献

单次诱发脑电成分的建模与估计

Modeling and estimation of single evoked brain potential components.

作者信息

Lange D H, Pratt H, Inbar G F

机构信息

Department of Electrical Engineering, Technion-IIT, Haifa, Israel.

出版信息

IEEE Trans Biomed Eng. 1997 Sep;44(9):791-9. doi: 10.1109/10.623048.

Abstract

In this paper, we present a novel approach to solving the single-trial evoked-potential estimation problem. Recognizing that different components of an evoked potential complex may originate from different functional brain sites and can be distinguished according to their respective latencies and amplitudes, we propose an estimation approach based on identification of evoked potential components on a single-trial basis. The estimation process is performed in two stages: first, an average evoked potential is calculated and decomposed into a set of components, with each component serving as a subtemplate for the next stage; then, the single measurement is parametrically modeled by a superposition of an emulated ongoing electroencephalographic activity and a linear combination of latency and amplitude-corrected component templates. Once optimized, the model provides the two assumed signal contributions, namely the ongoing brain activity and the single evoked brain response. The estimator's performance is analyzed analytically and via simulation, verifying its capability to extract single components at low signal-to-noise ratios typical of evoked potential data. Finally, two applications are presented, demonstrating the improved analysis capabilities gained by using the proposed approach. The first application deals with movement related brain potentials, where a change of the single evoked response due to external loading is detected. The second application involves cognitive event-related brain potentials, where a dynamic change of two overlapping components throughout the experimental session is detected and tracked.

摘要

在本文中,我们提出了一种解决单次试验诱发电位估计问题的新方法。认识到诱发电位复合体的不同成分可能源自不同的功能性脑区,并且可以根据它们各自的潜伏期和振幅加以区分,我们提出了一种基于单次试验识别诱发电位成分的估计方法。估计过程分两个阶段进行:首先,计算平均诱发电位并将其分解为一组成分,每个成分作为下一阶段的子模板;然后,通过模拟的持续脑电图活动与潜伏期和振幅校正后的成分模板的线性组合对单次测量进行参数建模。一旦优化,该模型即可提供两个假定的信号贡献,即持续的脑活动和单次诱发的脑反应。通过解析分析和仿真对估计器的性能进行了分析,验证了其在诱发电位数据典型的低信噪比情况下提取单个成分的能力。最后,给出了两个应用实例,展示了使用所提出方法所获得的改进分析能力。第一个应用涉及与运动相关的脑电位,其中检测到由于外部负荷导致的单次诱发反应的变化。第二个应用涉及与认知事件相关的脑电位,其中在整个实验过程中检测并跟踪了两个重叠成分的动态变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验