Suppr超能文献

从术中诱发电位中高效提取数据:1. 理论与模拟

Efficient extraction of data from intra-operative evoked potentials: 1.-Theory and simulations.

作者信息

Stecker Mark M, Wermelinger Jonathan, Shils Jay

机构信息

Fresno Institute of Neuroscience, USA.

Neurosurgery Department, Inselspital, University Hospital Bern, Switzerland.

出版信息

Heliyon. 2023 Jul 28;9(8):e18671. doi: 10.1016/j.heliyon.2023.e18671. eCollection 2023 Aug.

Abstract

UNLABELLED

Quickly and efficiently extracting evoked potential information from noise is critical to the clinical practice of intraoperative neurophysiologic monitoring (IONM). Currently this is primarily done using trained professionals to interpret averaged waveforms. The purpose of this paper is to evaluate and compare multiple means of electronically extracting simple to understand evoked potential characteristics with minimum averaging. A number of evoked potential models are studied and their performance evaluated as a function of the signal to noise level in simulations.

METHODS

which extract the least number of parameters from the data are least sensitive to the effects of noise and are easiest to interpret. The simplest model uses the baseline evoked potential and the correlation receiver to provide an amplitude measure. Amplitude measures extracted using the correlation receiver show superior performance to those based on peak to peak amplitude measures. In addition, measures of change in latency or shape of the evoked potential can be extracted using the derivative of the baseline evoked response or other methods. This methodology allows real-time access to amplitude measures that can be understood by the entire OR staff as they are small, dimensionless numbers of order unity which are simple to interpret. The IONM team can then adjust averaging and other parameters to allow for visual interpretation of waveforms as appropriate.

摘要

未标注

从噪声中快速有效地提取诱发电位信息对于术中神经生理监测(IONM)的临床实践至关重要。目前,这主要是通过训练有素的专业人员来解读平均波形来完成的。本文的目的是评估和比较多种以最少平均次数电子提取易于理解的诱发电位特征的方法。研究了多种诱发电位模型,并在模拟中根据信噪比评估了它们的性能。

方法

从数据中提取参数数量最少的模型对噪声影响最不敏感,并且最易于解释。最简单的模型使用基线诱发电位和相关接收器来提供幅度测量。使用相关接收器提取的幅度测量显示出优于基于峰峰值幅度测量的性能。此外,可以使用基线诱发反应的导数或其他方法提取诱发电位潜伏期或形状变化的测量值。这种方法允许实时获取幅度测量值,整个手术室工作人员都能理解这些值,因为它们是小的、无量纲的数量级为1的数字,易于解释。然后,IONM团队可以调整平均次数和其他参数,以便在适当时对波形进行视觉解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8303/10428058/cf05d30cac40/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验