Foresta C, Bordon P, Rossato M, Mioni R, Veldhuis J D
Instuto di Semeiotica Medica, Universita Degli Studi Di Padova, Italy.
J Clin Endocrinol Metab. 1997 Sep;82(9):3040-6. doi: 10.1210/jcem.82.9.4198.
We have investigated possible (negative) feedback and (positive) feed-forward activity within the human male gonadotropic axis by measuring serum concentrations of LH, FSH, and testosterone in blood sampled frequently and for a prolonged interval (every 20 min for 19 h) simultaneously from the peripheral circulation and the left spermatic vein. Cross-correlation analysis with time lag was used to evaluate relationships among serial serum LH, FSH, and/or testosterone concentrations over time (i.e. consistency or dissociation of trends in concentrations). Separately, Cluster analysis was applied to identify discrete LH, FSH, and testosterone pulses, which were cataloged for possible peak coincidence. The hypergeometric probability distribution was then used to test the null hypothesis that LH, FSH, and testosterone pulses are randomly associated. Cross-correlation analysis revealed: 1) peripheral blood LH and testosterone concentrations correlate positively at lags of 40-120 min with LH increases preceding testosterone increases, viz., feed-forward (P < 0.001); 2) LH and FSH concentrations in peripheral blood are positively correlated in simultaneous blood samples, as well as when FSH lags LH by 20 min (P < 0.01); 3) unexpectedly, LH and FSH concentrations in peripheral blood are inversely related at a lag of 80-100 min (P = 0.002) and 0.004, respectively) where LH lags FSH; 4) LH and testosterone concentrations in the spermatic vein show strongly positive correlations at lags of 80, 100, and 120 min (P = 0.002, 0.004, and 0.021, respectively); 5) spermatic vein testosterone concentrations correlate negatively with peripheral blood LH concentrations 20 or 40 min later (P = 0.012 and 0.05, respectively), which indicates autonegative feedback; and 6) in contrast, testosterone levels in the spermatic vein correlate negatively with FSH values in the periphery 100 and 120 min later (P < 0.01), indicating more delayed negative feedback of testosterone on serum FSH concentrations. Discrete pulse coincidence analysis disclosed: 1) a total of 30 testosterone pulses in the spermatic vein and 25 testosterone pulses in peripheral blood, with 28 LH and 29 FSH pulses in the periphery; 2) individual LH and FSH peak concordance was significantly nonrandom for FSH pulse maxima lagging LH pulse maxima by 20 min (P < 0.05 vs. randomness), with 6 observed coincidences vs. 2.9 +/- 1.5 (SD) expected; 3) peripheral LH pulses and spermatic vein testosterone pulses were strongly nonrandomly coupled at an 80-min lag, with 8 events observed vs. 3.0 +/- 1.5 events expected (P = 0.004); and 4) LH peaks in peripheral blood followed testosterone peaks in the spermatic vein by 40 min in a nonrandom manner, specifically, n = 11 observed vs. 3.0 +/- 1.5 expected (P < 0.001), indicating possible LH escape from testosterone's negative feedback. In summary, physiological regulation of the human male LH, FSH, and testosterone axis comprises multidirectional interactions, consisting of both (positive) feed-forward and (negative) feedback coupling. Based on a concept of network integration, we propose that age and other pathophysiological factors might modulate and/or disrupt these dynamic within-axis multihormonal linkages.
我们通过频繁且长时间(每20分钟一次,共19小时)同时从外周循环和左精索静脉采集血样,测量血清中促黄体生成素(LH)、促卵泡生成素(FSH)和睾酮的浓度,研究了人类男性促性腺轴内可能存在的(负)反馈和(正)前馈活动。采用带时间滞后的互相关分析来评估随时间变化的系列血清LH、FSH和/或睾酮浓度之间的关系(即浓度趋势的一致性或分离性)。另外,应用聚类分析来识别离散的LH、FSH和睾酮脉冲,并对其进行分类以确定可能的峰值重合情况。然后使用超几何概率分布来检验LH、FSH和睾酮脉冲随机相关的零假设。互相关分析显示:1)外周血LH和睾酮浓度在40 - 120分钟的滞后时间呈正相关,LH升高先于睾酮升高,即前馈(P < 0.001);2)外周血中同时采集的血样以及FSH滞后LH 20分钟时,LH和FSH浓度呈正相关(P < 0.01);3)出乎意料的是,外周血中LH和FSH浓度在80 - 100分钟的滞后时间呈负相关(P分别为0.002和0.004),此时LH滞后于FSH;4)精索静脉中的LH和睾酮浓度在80、100和120分钟的滞后时间呈强正相关(P分别为0.002、0.004和0.021);5)精索静脉睾酮浓度在20或40分钟后与外周血LH浓度呈负相关(P分别为0.012和0.05),这表明存在自身负反馈;6)相比之下,精索静脉中的睾酮水平在100和120分钟后与外周血FSH值呈负相关(P < 0.01),表明睾酮对血清FSH浓度的负反馈作用更延迟。离散脉冲重合分析表明:1)精索静脉中有30个睾酮脉冲,外周血中有25个睾酮脉冲,外周有28个LH脉冲和29个FSH脉冲;2)当FSH脉冲最大值滞后LH脉冲最大值20分钟时,个体LH和FSH峰值的一致性显著非随机(与随机性相比,P < 0.05),观察到6次重合,而预期为2.9 ± 1.5(标准差);3)外周LH脉冲和精索静脉睾酮脉冲在80分钟的滞后时间强烈非随机耦合,观察到8次事件,而预期为3.0 ± 1.5次事件(P = 0.004);4)外周血中的LH峰值以非随机方式在精索静脉中的睾酮峰值后40分钟出现,具体而言,观察到n = 11次,而预期为3.0 ± 1.5次(P < 0.001),表明LH可能逃避了睾酮的负反馈。总之,人类男性LH、FSH和睾酮轴的生理调节包括多方向相互作用,由(正)前馈和(负)反馈耦合组成。基于网络整合的概念,我们提出年龄和其他病理生理因素可能会调节和/或破坏这些轴内动态多激素联系。