Piscopo S E, Smoak I W
Department of Animal Science, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
Am J Vet Res. 1997 Sep;58(9):1038-42.
To evaluate and compare effects of albendazole sulfoxide (ABZSO) on rat embryos and bovine embryos produced in vitro.
In vitro produced bovine embryos. Rat embryos recovered from naturally bred Sprague-Dawley rats.
4- and 8-cell bovine embryos were randomly allocated to ABZSO or vehicle control groups. After 48 hours, embryos were evaluated for cell number and blastomere morphology. Rat embryos of similar stages, flushed from the uterine tube on gestational day 2-5, were randomly allocated to treatment or control groups. After 24 hours, embryos were evaluated as described previously.
44% of control bovine embryos divided in culture (> or = 16-cell stage). Fifteen percent of the controls had morphologic abnormalities, including disparity in blastomere size and cytoplasmic vacuoles and stippling. Treated (> or = 1 microgram of ABZSO/ml) bovine embryos differed (P < 0.0001) from controls, with 4% development and 93% abnormal morphology. Forty-five percent of control rat embryos divided in culture. Treated (> or = 500 ng of ABZSO/ml) rat embryos differed (P < 0.0003) from controls with regard to ability to divide. There were no consistent morphologic abnormalities in rat embryos.
In vitro produced bovine embryos were susceptible to ABZSO at a concentration > or = 1 microgram/ ml, resulting in decreased ability to divide and presence of gross morphologic abnormalities. Rat embryos produced in vivo and exposed in vitro to ABZSO at a concentration > or = 500 ng/ml had decreased ability to divide in culture.
Despite severe effects of ABZSO (> or = 1 microgram/ml) on bovine embryo development in vitro, it is beyond the scope of this study to speculate whether a therapeutic dosage of albendazole (10 mg/kg of body weight) would result in necessary concentrations of ABZSO in vivo to disrupt embryogenesis.