Suppr超能文献

广义协方差调整判别式:视角与应用

Generalized covariance-adjusted discriminants: perspective and application.

作者信息

Tu X M, Kowalski J, Randall J, Mendoza-Blanco J, Shear M K, Monk T H, Frank E, Kupfer D J

机构信息

Department of Statistics, University of Pittsburgh, Pennsylvania 16260, USA.

出版信息

Biometrics. 1997 Sep;53(3):900-9.

PMID:9290221
Abstract

When discriminant analysis is used in practice for assessing the usefulness of diagnostic markers, the lack of control over covariates motivates the need for their adjustment in the analysis. This necessity for adjustment arises especially when the researcher's aim is classification based on a set of diagnostic markers and is not based on a set of covariates for which there exists known heterogeneity among the subjects with respect to the groups under consideration. The traditional covariance-adjusted approach is restrictive for such applications in that they assume linear covariates and a normal distribution for the the feature vector. Further, there is no available method for variable selection in using such covariance-adjusted models. In this paper, we generalize the traditional covariance-adjusted model to a general normal and logistic model, where these generalized models not only relax the distributional assumptions on the feature vector but also allow for nonlinear covariates. Exact and asymptotic tests are also derived for the problem of variable selection for these new models. The methodology is illustrated with both simulated data and an actual data set from a psychiatric study on using the Social Rhythm Metric for patients with anxiety disorders.

摘要

在实际应用判别分析来评估诊断标志物的效用时,由于缺乏对协变量的控制,因此有必要在分析中对其进行调整。特别是当研究者的目标是基于一组诊断标志物进行分类,而不是基于一组在考虑的组中受试者之间存在已知异质性的协变量时,这种调整的必要性就凸显出来了。传统的协方差调整方法在这类应用中具有局限性,因为它们假定协变量是线性的,并且特征向量服从正态分布。此外,在使用这种协方差调整模型时,没有可用的变量选择方法。在本文中,我们将传统的协方差调整模型推广到一般正态和逻辑模型,其中这些广义模型不仅放宽了对特征向量的分布假设,还允许非线性协变量。我们还针对这些新模型的变量选择问题推导了精确检验和渐近检验。本文通过模拟数据和一项关于使用社会节奏指标对焦虑症患者进行精神病学研究的实际数据集来说明该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验