Suppr超能文献

临床研究中的蒙特卡罗方法:在多变量分析中的应用

Monte Carlo methods in clinical research: applications in multivariable analysis.

作者信息

Concato J, Feinstein A R

机构信息

Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

J Investig Med. 1997 Aug;45(6):394-400.

PMID:9291696
Abstract

BACKGROUND

Monte Carlo methods use "simulated" analyses with random numbers for solving problems, particularly those that defy solutions using mathematical theory alone. Research using Monte Carlo simulations is very popular in many branches of science and is sometimes done in clinical investigation. The origins and basic strategy of the technique, however, may not be well known to clinical researchers. The purpose of this paper is to describe the history and general principles of Monte Carlo methods and to demonstrate how Monte Carlo simulations were recently applied to examine a phenomenon in multivariable statistical analysis called the number of outcome events per independent variable (EPV). For example, in a cohort of 200 people, with 50 deaths and 5 independent (predictor) variables, EPV = 50/5 = 10.

METHODS

The "real-world" data came from a clinical trial of 673 patients in which 7 variables were cogent predictors of 252 deaths, so that EPV = 252/7 = 36. For the Monte Carlo simulations, special models were used while allowing simulations of proportional hazards and logistic regression to maintain the basic relationship of variables and the same size of the original population, at EPV values of 2, 5, 10, 15, 20, and 25.

RESULTS

The Monte Carlo simulations confirmed a previously undocumented "rule of thumb" stating that when the EPV is less than 10-20, the algebraic models used in logistic regression and proportional hazards regression may be unreliable, leading to imprecise or spurious results.

CONCLUSION

Monte Carlo techniques offer attractive methods for clinical investigators to use in solving problems that are not amenable to customary mathematical approaches.

摘要

背景

蒙特卡罗方法使用带有随机数的“模拟”分析来解决问题,特别是那些仅靠数学理论难以求解的问题。蒙特卡罗模拟研究在许多科学领域都非常流行,有时也用于临床研究。然而,临床研究人员可能并不十分了解该技术的起源和基本策略。本文旨在描述蒙特卡罗方法的历史和一般原理,并展示蒙特卡罗模拟最近是如何被用于研究多变量统计分析中的一种现象,即每个自变量的结局事件数(EPV)。例如,在一个200人的队列中,有50人死亡,5个独立(预测)变量,EPV = 50/5 = 10。

方法

“真实世界”的数据来自一项对673名患者的临床试验,其中7个变量是252例死亡的有力预测因素,因此EPV = 252/7 = 36。对于蒙特卡罗模拟,使用了特殊模型,同时允许对比例风险模型和逻辑回归模型进行模拟,以保持变量的基本关系和原始总体的相同规模,EPV值分别为2、5、10,、15、20和25。

结果

蒙特卡罗模拟证实了一条此前未被记录的“经验法则”,即当EPV小于10 - 20时,逻辑回归和比例风险回归中使用的代数模型可能不可靠,会导致结果不精确或虚假。

结论

蒙特卡罗技术为临床研究人员提供了有吸引力的方法,用于解决那些不适合传统数学方法的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验