Suppr超能文献

恶性乳腺肿瘤的超声血流测量。一种潜在的新预后因素。

Sonographic blood flow measurements in malignant breast tumors. A potential new prognostic factor.

作者信息

Sohn C, Beldermann F, Bastert G

机构信息

Department for Prenatal and Gynecological Ultrasound Diagnosis and Treatment, Clinic of OB/GYN, University of Heidelberg, Heidelberg, Germany.

出版信息

Surg Endosc. 1997 Sep;11(9):957-60. doi: 10.1007/s004649900496.

Abstract

BACKGROUND

The aim of this study was to find a possible relationship between the biological behavior of carcinomas of the breast and sonographically detectable blood flow after first studies showed a correlation between blood flow and prognostic factors.

METHOD

259 patients with ductal invasive breast cancer were examined using MEM (i.e., the Maximum Entropy Method), a new sonographic blood flow measurement technique capable of discerning considerably slower blood flow velocities than Doppler sonography. Due to the lack of objective methods for quantifying the blood flow, the findings were divided into three classes dependent upon the visual color information obtained. The blood flow was correlated with the size of the tumor, lymph node and receptor status, ploidy and S-phase fraction.

RESULTS

Most of the patients with small tumors, without lymph node metastases, with positive receptors, with a diploid genome, and with a low S-phase fraction belonged to the group with the lowest blood flow.

CONCLUSION

The close relationship between the established prognostic factors and the sonographic blood flow measurements using MEM might be indicative of a new preoperative prognostic factor; this must, however, be confirmed by larger studies.

摘要

背景

在首次研究显示血流与预后因素之间存在相关性之后,本研究的目的是探寻乳腺癌生物学行为与超声可检测到的血流之间可能存在的关系。

方法

使用MEM(即最大熵方法)对259例浸润性导管癌患者进行检查,MEM是一种新的超声血流测量技术,能够识别比多普勒超声慢得多的血流速度。由于缺乏量化血流的客观方法,根据获得的视觉颜色信息将结果分为三类。将血流与肿瘤大小、淋巴结及受体状态、倍体和S期分数相关联。

结果

大多数肿瘤较小、无淋巴结转移、受体阳性、基因组为二倍体且S期分数较低的患者属于血流最低的组。

结论

既定的预后因素与使用MEM进行的超声血流测量之间的密切关系可能表明存在一种新的术前预后因素;然而,这必须通过更大规模的研究来证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验