Suppr超能文献

乙二胺四乙酸(EDTA)和二乙烯三胺五乙酸(DTPA)的环境归宿

Environmental fate of EDTA and DTPA.

作者信息

Sillanpää M

机构信息

Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Espoo, Finland.

出版信息

Rev Environ Contam Toxicol. 1997;152:85-111. doi: 10.1007/978-1-4612-1964-4_3.

Abstract

EDTA can be extremely persistent in WWTP and also in natural waters; DTPA seems more biodegradable. However, the biodegradability of DTPA might be of negligible significance as EDTA, and in some cases also DTPA, are generally found in the receiving waters of many industrial areas, thus being classified as one of the major organic pollutants discharged in waters. The photochemical degradation of Fe(III) complexes of these compounds is documented, but the extent to which these results can be applied to natural waters is not clear. There exist still some uncertainties in the chemical speciation, adsorption, overall degradation, and ultimately the eutrophication effect of EDTA and especially of DTPA. It can be inferred that EDTA can affect the essential and nonessential metal balance in natural waters as well as in aquatic organisms, even in the long term. The estimation of the chemical speciation of EDTA and DTPA in natural waters is a challenging task because of of the complexicity of the system and should be based not only on equilibrium calculations but also on direct analytical determinations of diverse metal species. Unfortunately, analytical methods for speciation studies at environmentally relevant concentrations are not available. Also, monitoring of EDTA or DTPA in sediments and solid particles has not been initiated. EDTA and DTPA are not expected to be acutely toxic to aquatic organisms. On the other hand, in natural waters, several compounds affect organisms simultaneously. Therefore, EDTA and DTPA can contribute to the aquatic toxicity at significantly lower concentration than those determined by short-term toxicity tests. Also, more studies should be directed to estimating chronic effects, including the possible imbalance of body calcium in animals and other organisms. EDTA and DTPA can certainly desorb heavy metals bound to sediments and also prevent heavy metal sedimentation, thus increasing their cycle in water. However, these metal complexes are not expected to be as bioavailable as a free metal ions. Taken together, EDTA and DTPA, being persistent compounds, contribute to the general chemicalization of the aquatic environment. They can also cause several indirect and, under extreme circumstances, direct effects in the aquatic environment. Thus, their release into natural waters should be minimized wherever possible.

摘要

乙二胺四乙酸(EDTA)在污水处理厂以及天然水体中可能具有极强的持久性;二乙基三胺五乙酸(DTPA)似乎更易生物降解。然而,DTPA的生物降解性与EDTA相比可能微不足道,而且在某些情况下,EDTA以及DTPA通常在许多工业区的受纳水体中被发现,因此被归类为排放到水体中的主要有机污染物之一。这些化合物的铁(III)配合物的光化学降解已有文献记载,但这些结果能在多大程度上应用于天然水体尚不清楚。EDTA尤其是DTPA在化学形态、吸附、整体降解以及最终的富营养化效应方面仍存在一些不确定性。可以推断,即使从长期来看,EDTA也会影响天然水体以及水生生物体内必需和非必需金属的平衡。由于体系的复杂性,估算天然水体中EDTA和DTPA的化学形态是一项具有挑战性的任务,而且不仅应基于平衡计算,还应基于对多种金属物种的直接分析测定。遗憾的是,尚无适用于环境相关浓度下形态研究的分析方法。此外,尚未启动对沉积物和固体颗粒中EDTA或DTPA的监测。预计EDTA和DTPA对水生生物不会产生急性毒性。另一方面,在天然水体中,多种化合物会同时影响生物。因此,EDTA和DTPA在浓度远低于短期毒性试验所确定的浓度时,就可能对水生生物产生毒性作用。此外,应开展更多研究以评估其慢性影响,包括动物和其他生物体内钙平衡可能受到的影响。EDTA和DTPA肯定会使结合在沉积物上的重金属解吸,还能防止重金属沉淀,从而增加其在水中的循环。然而,这些金属配合物的生物可利用性预计不如游离金属离子。综上所述,EDTA和DTPA作为持久性化合物,会加剧水生环境的普遍化学污染。它们还可能在水生环境中引发多种间接影响,在极端情况下甚至会产生直接影响。因此,应尽可能减少它们向天然水体中的排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验