Suppr超能文献

针对线粒体脑肌病伴乳酸血症和卒中样发作综合征(MELAS)中复合物I缺乏的代谢干预措施。

Metabolic interventions against complex I deficiency in MELAS syndrome.

作者信息

Majamaa K, Rusanen H, Remes A, Hassinen I E

机构信息

Department of Neurology, University of Oulu, Finland.

出版信息

Mol Cell Biochem. 1997 Sep;174(1-2):291-6.

PMID:9309702
Abstract

The mitochondrial DNA (mtDNA) codes for essential hydrophobic components of the system of oxidative phosphorylation. Diseases caused by mtDNA defects are manifested as variable clinical phenotypes and the symptoms represent the involvement of tissues with high energy demand. Various approaches have been taken to treat mitochondrial diseases by administration of redox compounds, enzyme activators, vitamins and coenzymes or dietary measures. The MELAS mutation at the base pair 3243 of mitochondrial DNA demolishes a transcription termination sequence located within the tRNA(Leu)[UUR] gene, resulting in synthesis of an abnormally large derivative of 16 S rRNA and defective translation. The activity of NADH:Q oxidoreductase (complex I) is often decreased and lactic acidosis is a typical clinical finding. We hypothesized that defective translation of the seven mitochondrially coded subunits (of the total 41) of complex I may alter its affinity to the NADH substrate in which case the activity decrease may be compensated for by increasing the NADH concentration. A MELAS patient was treated with oral nicotinamide for 5 months. The blood NAD content representing the NAD + NADH pool of erythrocytes rose 24 fold and the blood lactate + pyrovate concentration fell by 50%. All these metabolic alterations suggested an improvement of the function of complex I or the whole mitochondrial respiratory chain. However, the kinetic properties of the patient's complex I were similar to the reference values. A tempting explanation is that the free NADH concentration in mitochondria is normally at the level of K(m), so that the decreased activity of the respiratory chain can be compensated for by increased mitochondrial [NADH]. Another possibility would be that the substrate shuttles for transport of reducing power of cytosolic NADH into mitochondria (the malate aspartate or glycerol-3-phosphate shuttles) may be enhanced by increased total NAD + NADH. Because the malate-aspartate shuttle is actually a pump for reducing equivalents driven by the mitochondrial membrane energization, it is proposed that the exacerbations of the MELAS syndrome be partly due to a vicious circle initiated by a defect of complex I and affecting the active transport of the hydrogen from cytosolic NADH into the mitochondrion.

摘要

线粒体DNA(mtDNA)编码氧化磷酸化系统的必需疏水成分。由mtDNA缺陷引起的疾病表现为多种临床表型,症状体现了高能量需求组织的受累情况。人们采取了多种方法来治疗线粒体疾病,包括给予氧化还原化合物、酶激活剂、维生素和辅酶,或采取饮食措施。线粒体DNA第3243位碱基对处的MELAS突变破坏了位于tRNA(Leu)[UUR]基因内的转录终止序列,导致合成异常大的16S rRNA衍生物并出现翻译缺陷。NADH:Q氧化还原酶(复合体I)的活性常常降低,乳酸性酸中毒是典型的临床发现。我们推测,复合体I的七个线粒体编码亚基(总共41个)的翻译缺陷可能会改变其对NADH底物的亲和力,在这种情况下,活性降低可能通过增加NADH浓度来补偿。一名MELAS患者接受了5个月的口服烟酰胺治疗。代表红细胞中NAD + NADH池的血液NAD含量增加了24倍,血液乳酸+丙酮酸浓度下降了50%。所有这些代谢改变表明复合体I或整个线粒体呼吸链的功能得到了改善。然而,该患者复合体I的动力学特性与参考值相似。一个诱人的解释是,线粒体中游离NADH浓度通常处于K(m)水平,因此呼吸链活性降低可通过增加线粒体[NADH]来补偿。另一种可能性是,用于将胞质NADH的还原力转运到线粒体中的底物穿梭系统(苹果酸-天冬氨酸或3-磷酸甘油穿梭系统)可能会因总NAD + NADH增加而增强。由于苹果酸-天冬氨酸穿梭系统实际上是一种由线粒体膜电位驱动的还原当量泵,因此有人提出,MELAS综合征的病情加重部分是由于复合体I缺陷引发的恶性循环,该循环影响了氢从胞质NADH向线粒体的主动转运。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验