Suppr超能文献

从头蛋白质设计:全自动序列选择

De novo protein design: fully automated sequence selection.

作者信息

Dahiyat B I, Mayo S L

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Science. 1997 Oct 3;278(5335):82-7. doi: 10.1126/science.278.5335.82.

Abstract

The first fully automated design and experimental validation of a novel sequence for an entire protein is described. A computational design algorithm based on physical chemical potential functions and stereochemical constraints was used to screen a combinatorial library of 1.9 x 10(27) possible amino acid sequences for compatibility with the design target, a betabetaalpha protein motif based on the polypeptide backbone structure of a zinc finger domain. A BLAST search shows that the designed sequence, full sequence design 1 (FSD-1), has very low identity to any known protein sequence. The solution structure of FSD-1 was solved by nuclear magnetic resonance spectroscopy and indicates that FSD-1 forms a compact well-ordered structure, which is in excellent agreement with the design target structure. This result demonstrates that computational methods can perform the immense combinatorial search required for protein design, and it suggests that an unbiased and quantitative algorithm can be used in various structural contexts.

摘要

本文描述了一种全新蛋白质完整序列的首次全自动设计及实验验证过程。基于物理化学势函数和立体化学约束条件的计算设计算法,被用于筛选一个包含1.9×10²⁷种可能氨基酸序列的组合文库,以寻找与设计目标相匹配的序列,该设计目标是基于锌指结构域多肽主链结构的ββα蛋白质基序。BLAST搜索结果显示,所设计的序列,即全序列设计1(FSD - 1),与任何已知蛋白质序列的同源性都非常低。FSD - 1的溶液结构通过核磁共振光谱法解析得出,结果表明FSD - 1形成了一个紧凑且有序的结构,这与设计目标结构高度吻合。这一结果证明了计算方法能够完成蛋白质设计所需的巨大组合搜索,并且表明一种无偏差的定量算法可应用于各种结构背景中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验