Suppr超能文献

蛋白质功能设计与优化的机遇与挑战。

Opportunities and challenges in design and optimization of protein function.

机构信息

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nat Rev Mol Cell Biol. 2024 Aug;25(8):639-653. doi: 10.1038/s41580-024-00718-y. Epub 2024 Apr 2.

Abstract

The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities. Additionally, protein optimization methods have improved the stability and activity of complex eukaryotic proteins. Thanks to their increased reliability, computational design methods have been applied to improve therapeutics and enzymes for green chemistry and have generated vaccine antigens, antivirals and drug-delivery nano-vehicles. Moreover, the high success of design methods reflects an increased understanding of basic rules that govern the relationships among protein sequence, structure and function. However, de novo design is still limited mostly to α-helix bundles, restricting its potential to generate sophisticated enzymes and diverse protein and small-molecule binders. Designing complex protein structures is a challenging but necessary next step if we are to realize our objective of generating new-to-nature activities.

摘要

在过去的十年中,蛋白质设计领域取得了显著的进展。在历史上,纯粹基于结构的设计方法的可靠性较低,限制了其应用,但最近结合基于结构和基于序列的计算以及机器学习工具的策略,极大地改进了蛋白质工程和设计。在这篇综述中,我们讨论了这些方法如何能够设计出越来越复杂的结构和具有治疗相关性的活性。此外,蛋白质优化方法提高了复杂真核蛋白的稳定性和活性。由于其可靠性的提高,计算设计方法已被应用于改善治疗药物和用于绿色化学的酶,并产生了疫苗抗原、抗病毒药物和药物输送纳米载体。此外,设计方法的高成功率反映了人们对控制蛋白质序列、结构和功能之间关系的基本规则的理解有所增加。然而,从头设计仍然主要局限于α-螺旋束,限制了其产生复杂酶以及各种蛋白质和小分子结合物的潜力。设计复杂的蛋白质结构是一个具有挑战性但必要的下一步,如果我们要实现产生新天然活性的目标的话。

相似文献

1
Opportunities and challenges in design and optimization of protein function.蛋白质功能设计与优化的机遇与挑战。
Nat Rev Mol Cell Biol. 2024 Aug;25(8):639-653. doi: 10.1038/s41580-024-00718-y. Epub 2024 Apr 2.
2
Computational protein design with backbone plasticity.具有主链可塑性的计算蛋白质设计。
Biochem Soc Trans. 2016 Oct 15;44(5):1523-1529. doi: 10.1042/BST20160155. Epub 2016 Oct 19.
9
Principles of Protein Stability and Their Application in Computational Design.蛋白质稳定性原理及其在计算设计中的应用。
Annu Rev Biochem. 2018 Jun 20;87:105-129. doi: 10.1146/annurev-biochem-062917-012102. Epub 2018 Jan 26.

引用本文的文献

1
Protein Structural Phylogenetics.蛋白质结构系统发育学
Genome Biol Evol. 2025 Jul 30;17(8). doi: 10.1093/gbe/evaf139.

本文引用的文献

3
Score-based generative modeling for de novo protein design.基于得分的从头蛋白质设计生成模型。
Nat Comput Sci. 2023 May;3(5):382-392. doi: 10.1038/s43588-023-00440-3. Epub 2023 May 4.
4
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.
5
What Have We Learned from Design of Function in Large Proteins?我们从大型蛋白质的功能设计中学到了什么?
Biodes Res. 2022 Mar 8;2022:9787581. doi: 10.34133/2022/9787581. eCollection 2022.
8
De novo design of protein structure and function with RFdiffusion.利用 RFdiffusion 从头设计蛋白质结构和功能。
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.
9
Stable Mammalian Serum Albumins Designed for Bacterial Expression.稳定的哺乳动物血清白蛋白的细菌表达设计。
J Mol Biol. 2023 Sep 1;435(17):168191. doi: 10.1016/j.jmb.2023.168191. Epub 2023 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验