Ewadinger N, Syed N, Lukowiak K, Bulloch A
J Exp Biol. 1994 Jul;192(1):291-7. doi: 10.1242/jeb.192.1.291.
Electrical coupling is a common means of cell-to-cell communication in both neuronal and non-neuronal tissues (Lowenstein, 1985). Within the nervous system, many electrically coupled neurones exhibit dye coupling (Bennett, 1973; Stewart, 1978; Glantz and Kirk, 1980; Spencer and Satterlie, 1980; Fraser and Heitler, 1993); however, some electrically coupled cells do not dye-couple (Audesirk et al. 1982; Murphy et al. 1983; Berdan, 1987; Robinson et al. 1993; Veenstra et al. 1993). Electrical coupling and dye coupling, often considered in parallel, are in fact two different parameters that can vary independently (e.g. Audesirk et al. 1982; Perez-Armendariz et al. 1991). The giant identified neurones of pulmonate and opisthobranch molluscs have frequently been used for studies of neuronal communication and its plasticity (Winlow and McCrohan, 1987; Bulloch, 1989). In the present study, we explored the relationship between electrical and tracer coupling in both strongly and weakly coupled pairs of molluscan neurones. Specifically, we examined electrically coupled, identified neurones in a freshwater pond snail, Lymnaea stagnalis L., and tested for tracer coupling with Lucifer Yellow CH and biocytin. The cells examined were the strongly electrically coupled neurones, visceral dorsal 1 (VD1) and right parietal dorsal 2 (RPD2) (Boer et al. 1979; Benjamin and Pilkington, 1986), and the weakly coupled neurones, left buccal 1 (LB1) and right buccal 1 (RB1) (Benjamin and Rose, 1979). The use of these particular neurones made it possible to compare electrical coupling with tracer coupling in the molluscan central nervous system (CNS). All experiments were performed on laboratory-bred Lymnaea stagnalis (Mollusca, Pulmonata), maintained as previously described (Ridgway et al. 1991). The CNS was dissected from mature animals (1618 mm shell length) and pinned to the silicone rubber (RTV 616 GE) base of a recording dish in normal saline (51.3 mmol l-1 NaCl, 1.7 mmol l-1 KCl, 4.1 mmol l-1 CaCl2, 1.5 mmol l-1 MgCl2 and 5 mmol l-1 Hepes, pH 7.9). Following removal of the outer connective tissue sheath, a small Pronase crystal (Sigma, type XIV, P-5147), held by forceps, was carefully applied to specific ganglia; this treatment softened the inner sheath and facilitated microelectrode penetration. The CNS was then rinsed several times at 5 °C in normal saline.
电耦合是神经元组织和非神经元组织中细胞间通讯的一种常见方式(洛温斯坦,1985年)。在神经系统中,许多电耦合神经元表现出染料耦合(贝内特,1973年;斯图尔特,1978年;格兰茨和柯克,1980年;斯宾塞和萨特利,1980年;弗雷泽和海特勒,1993年);然而,一些电耦合细胞并不表现出染料耦合(奥德西尔克等人,1982年;墨菲等人,1983年;伯丹,1987年;罗宾逊等人,1993年;维恩斯特拉等人,1993年)。电耦合和染料耦合通常被并行考虑,实际上是两个可以独立变化的不同参数(例如,奥德西尔克等人,1982年;佩雷斯-阿门达里兹等人,1991年)。肺螺亚纲和后鳃亚纲软体动物的已鉴定巨型神经元经常被用于研究神经元通讯及其可塑性(温洛和麦克罗汉,1987年;布洛赫,1989年)。在本研究中,我们探讨了软体动物神经元强耦合对和弱耦合对中电耦合和示踪剂耦合之间的关系。具体而言,我们检查了淡水池塘螺——静水椎实螺中电耦合的已鉴定神经元,并测试了与路西法黄CH和生物素的示踪剂耦合。所检查的细胞是强电耦合神经元——内脏背侧1(VD1)和右顶叶背侧2(RPD2)(博尔等人,1979年;本杰明和皮尔金顿,1986年),以及弱电耦合神经元——左颊1(LB1)和右颊1(RB1)(本杰明和罗斯,1979年)。使用这些特定的神经元使得在软体动物中枢神经系统(CNS)中比较电耦合和示踪剂耦合成为可能。所有实验均在实验室饲养的静水椎实螺(软体动物,肺螺亚纲)上进行,饲养方法如前所述(里奇韦等人,1991年)。从成熟动物(壳长16 - 18毫米)中解剖出中枢神经系统,并固定在装有生理盐水(51.3毫摩尔/升氯化钠、1.7毫摩尔/升氯化钾、4.1毫摩尔/升氯化钙、1.5毫摩尔/升氯化镁和5毫摩尔/升羟乙基哌嗪乙磺酸,pH 7.9)的记录皿的硅橡胶(通用电气RTV 616)底座上。去除外层结缔组织鞘后,用镊子夹住一小颗链霉蛋白酶晶体(西格玛,十四型,P - 5147),小心地施加到特定神经节上;这种处理使内层鞘软化并便于微电极插入。然后将中枢神经系统在5℃下用生理盐水冲洗几次。