Suppr超能文献

缝隙连接编码的Innexin蛋白:组织及中枢神经系统中的序列分析与特性研究

Gap Junction Coding Innexin in : Sequence Analysis and Characterization in Tissues and the Central Nervous System.

作者信息

Mersman Brittany A, Jolly Sonia N, Lin Zhenguo, Xu Fenglian

机构信息

Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States.

Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States.

出版信息

Front Synaptic Neurosci. 2020 Feb 25;12:1. doi: 10.3389/fnsyn.2020.00001. eCollection 2020.

Abstract

Connections between neurons called synapses are the key components underlying all nervous system functions of animals and humans. However, important genetic information on the formation and plasticity of one type, the electrical (gap junction-mediated) synapse, is understudied in many invertebrates. In the present study, we set forth to identify and characterize the gap junction-encoding gene innexin in the central nervous system (CNS) of the mollusk pond snail . With PCR, 3' and 5' RACE, and BLAST searches, we identified eight innexin genes in the genome, named . Phylogenetic analysis revealed that the innexin genes originated from a single copy in the common ancestor of molluskan species by multiple gene duplication events and have been maintained in since they were generated. The paralogous innexin genes demonstrate distinct expression patterns among tissues. In addition, one paralog, , exhibits heterogeneity in cells and ganglia, suggesting the occurrence of functional diversification after gene duplication. These results introduce possibilities to study an intriguing potential relationship between innexin paralog expression and cell-specific functional outputs such as heterogenic ability to form channels and exhibit synapse plasticity. The CNS contains large neurons and functionally defined networks for behaviors; with the introduction of in the gap junction gene field, we are providing novel opportunities to combine genetic research with direct investigations of functional outcomes at the cellular, synaptic, and behavioral levels.

摘要

被称为突触的神经元之间的连接是动物和人类所有神经系统功能的关键组成部分。然而,关于一种类型(电突触,即缝隙连接介导的突触)的形成和可塑性的重要遗传信息,在许多无脊椎动物中尚未得到充分研究。在本研究中,我们着手鉴定和表征软体动物池塘蜗牛中枢神经系统(CNS)中编码缝隙连接的基因innexin。通过聚合酶链反应(PCR)、3'和5'端快速扩增cDNA末端(RACE)以及BLAST搜索,我们在基因组中鉴定出八个innexin基因,命名为 。系统发育分析表明,这些innexin基因通过多次基因复制事件起源于软体动物物种共同祖先中的一个单一拷贝,并且自产生以来一直在 中得以保留。旁系同源的innexin基因在不同组织中表现出不同的表达模式。此外,一个旁系同源基因 在细胞和神经节中表现出异质性,这表明基因复制后发生了功能多样化。这些结果为研究innexin旁系同源基因表达与细胞特异性功能输出(如形成通道的异质性能力和表现出突触可塑性)之间有趣的潜在关系带来了可能性。池塘蜗牛的中枢神经系统包含大型神经元和用于行为的功能明确的网络;随着缝隙连接基因领域中 的引入,我们为将基因研究与细胞、突触和行为水平的功能结果直接研究相结合提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d707/7052179/cc74abac2213/fnsyn-12-00001-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验