Eger E I, Ionescu P, Laster M J, Weiskopf R B
Department of Anesthesia, University of California, San Francisco 94143-0464, USA.
Anesth Analg. 1997 Oct;85(4):892-8. doi: 10.1097/00000539-199710000-00033.
Soda lime and Baralyme brand carbon dioxide absorbents degrade sevoflurane to CF2 = C(CF3)OCH2F, a potentially nephrotoxic vinyl ether called Compound A. Dehydration of these absorbents increases both the degradation of sevoflurane to Compound A and the degradation of Compound A. The balance between sevoflurane degradation and Compound A degradation determines the concentration of Compound A issuing from the absorbent (the net production of Compound A). We studied the effect of dehydration on the net production of Compound A in a simulated anesthetic circuit. Mimicking continuing oxygen delivery for 1, 2, or 3 days after completion of an anesthetic, we directed a "conditioning" fresh gas flow of 5 L/min or 10 L/min retrograde through fresh absorbent in situ in a standard absorbent system for 16, 40, and/or 64 h. The conditioned absorbent was subsequently used (without mixing of the granules) in a standard anesthetic circuit in which a 3-L rebreathing bag substituted for the lung. Metabolism was mimicked by introducing 250 mL/min carbon dioxide into the "lung," and the lung was ventilated with a minute ventilation of 10 L/ min. At the same time, we introduced sevoflurane in a fresh gas inflow of 2 L/min at a concentration sufficient to produce an inspired concentration of 3.2%. Because of increased sevoflurane destruction by the absorbent, progressively longer periods of conditioning (dehydration) and/or higher inflow rates increased the delivered (vaporizer) concentration of sevoflurane required to sustain a 3.2% concentration. Dehydration of Baralyme increased the inspired concentration of Compound A by up to sevenfold, whereas dehydration of soda lime markedly decreased the inspired concentration of Compound A.
Economical delivery of modern inhaled anesthetics requires rebreathing of exhaled gases after removal of carbon dioxide. However, carbon dioxide absorbents (Baralyme/soda lime) may degrade anesthetics to toxic substances. Baralyme dehydration increases, and soda lime dehydration decreases, degradation of the inhaled anesthetic sevoflurane to the toxic substance, Compound A.
苏打石灰和碱石灰品牌的二氧化碳吸收剂可将七氟醚降解为CF2 = C(CF3)OCH2F,这是一种具有潜在肾毒性的乙烯基醚,称为化合物A。这些吸收剂脱水会增加七氟醚向化合物A的降解以及化合物A自身的降解。七氟醚降解与化合物A降解之间的平衡决定了从吸收剂中释放出的化合物A的浓度(化合物A的净生成量)。我们在模拟麻醉回路中研究了脱水对化合物A净生成量的影响。模拟麻醉结束后持续供氧1、2或3天的情况,我们将5 L/分钟或10 L/分钟的“预处理”新鲜气流以逆行方式通过标准吸收系统中原位的新鲜吸收剂,持续16、40和/或64小时。随后,将经过预处理的吸收剂(不混合颗粒)用于标准麻醉回路,其中用一个3升的再呼吸袋代替肺。通过向“肺”中引入250 mL/分钟的二氧化碳来模拟代谢,肺以10 L/分钟的分钟通气量进行通气。同时,我们以2 L/分钟的新鲜气流引入七氟醚,其浓度足以产生3.2%的吸入浓度。由于吸收剂对七氟醚的破坏增加,预处理(脱水)时间逐渐延长和/或气流速率提高,维持3.2%浓度所需的七氟醚输送(蒸发器)浓度也相应增加。碱石灰脱水使化合物A的吸入浓度增加高达七倍,而苏打石灰脱水则显著降低了化合物A的吸入浓度。
现代吸入麻醉药的经济给药需要在去除二氧化碳后再呼吸呼出气体。然而,二氧化碳吸收剂(碱石灰/苏打石灰)可能会将麻醉药降解为有毒物质。碱石灰脱水会增加,而苏打石灰脱水会减少吸入麻醉药七氟醚向有毒物质化合物A的降解。