Vertes R P, Kocsis B
Center for Complex Systems, Florida Atlantic University, Boca Raton 33431, USA.
Neuroscience. 1997 Dec;81(4):893-926. doi: 10.1016/s0306-4522(97)00239-x.
We present a new model for the generation of theta rhythm of the hippocampus. We propose that theta at CA1 involves extracellular current fluxes produced by alternating depolarizing and hyperpolarizing membrane potential fluctuations of large populations of hippocampal pyramidal cells. Pyramidal cells are, in turn, controlled by rhythmically bursting cholinergic and GABAergic cells of the medial septum/vertical limb of the diagonal band. We postulate that septal cholinergic and GABAergic rhythmically bursting cells fire in relative synchrony; their coordinated burst discharge (burst mode) drives the positive-going phase of intracellular theta and associated firing of pyramidal cells; their synchronized pauses (interburst mode) give rise to the negative-going phase of intracellular theta and an inhibition of pyramidal cells. We further demonstrate that the theta rhythm is controlled by a network of cells extending from the brainstem to the septum/hippocampus. During theta, tonically discharging cells of the nucleus reticularis pontis oralis activate neurons of the supramammillary nucleus; the supramammillary nucleus, in turn, converts this steady barrage into a rhythmical pattern of discharge which is relayed to GABAergic/ cholinergic rhythmically bursting cells of the medial septum. The septal rhythmically bursting cells modulate subsets of hippocampal interneurons and principal cells in the generation of the theta rhythm. We review evidence showing that the serotonin-containing neurons of the median raphe nucleus desynchronize the hippocampal electroencephalogram, presumably by disrupting the rhythmical discharge of septal cholinergic and GABAergic neurons. Finally, we summarize recent work indicating that the theta rhythm is critically involved in memory functions of the hippocampus and that its disruption (electroencephalographic desynchronization) may block or temporarily suspend mnemonic processes of the hippocampus.
我们提出了一种海马体θ节律产生的新模型。我们认为,CA1区的θ节律涉及大量海马体锥体细胞交替的去极化和超极化膜电位波动所产生的细胞外电流通量。反过来,锥体细胞受内侧隔/斜角带垂直支的节律性爆发胆碱能和GABA能细胞控制。我们假设隔区胆碱能和GABA能节律性爆发细胞相对同步放电;它们协调的爆发性放电(爆发模式)驱动细胞内θ波的正向相位以及锥体细胞的相关放电;它们同步的暂停(爆发间期模式)产生细胞内θ波的负向相位并抑制锥体细胞。我们进一步证明,θ节律受从脑干延伸至隔区/海马体的细胞网络控制。在θ节律期间,脑桥嘴侧网状核的紧张性放电细胞激活乳头体上核的神经元;乳头体上核继而将这种稳定的传入转换为节律性放电模式,该模式被中继至内侧隔区的GABA能/胆碱能节律性爆发细胞。隔区节律性爆发细胞在θ节律的产生过程中调节海马体中间神经元和主细胞的亚群。我们回顾了相关证据,表明中缝正中核含5-羟色胺的神经元使海马体脑电图去同步化,推测是通过破坏隔区胆碱能和GABA能神经元的节律性放电来实现的。最后,我们总结了近期的研究工作,表明θ节律在海马体的记忆功能中起关键作用,其破坏(脑电图去同步化)可能会阻断或暂时中止海马体的记忆过程。