Seok Y J, Sondej M, Badawi P, Lewis M S, Briggs M C, Jaffe H, Peterkofsky A
NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 1997 Oct 17;272(42):26511-21. doi: 10.1074/jbc.272.42.26511.
The histidine phosphocarrier protein (HPr) is an essential element in sugar transport by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Ligand fishing, using surface plasmon resonance, was used to show the binding of HPr to a nonphosphotransferase protein in extracts of Escherichia coli; the protein was subsequently identified as glycogen phosphorylase (GP). The high affinity (association constant approximately 10(8) M-1), species-specific interaction was also demonstrated in electrophoretic mobility shift experiments by polyacrylamide gel electrophoresis. Equilibrium ultracentrifugation analysis indicates that HPr allosterically regulates the oligomeric state of glycogen phosphorylase. HPr binding increases GP activity to 250% of the level in control assays. Kinetic analysis of coupled enzyme assays shows that the binding of HPr to GP causes a decrease in the Km for glycogen and an increase in the Vmax for phosphate, indicating a mixed type activation. The stimulatory effect of E. coli HPr on E. coli GP activity is species-specific, and the unphosphorylated form of HPr activates GP more than does the phosphorylated form. Replacement of specific amino acids in HPr results in reduced GP activation; HPr residues Arg-17, Lys-24, Lys-27, Lys-40, Ser-46, Gln-51, and Lys-72 were established to be important. This novel mechanism for the regulation of GP provides the first evidence directly linking E. coli HPr to the regulation of carbohydrate metabolism.
组氨酸磷酸载体蛋白(HPr)是细菌磷酸烯醇丙酮酸:糖磷酸转移酶系统进行糖转运的必需元件。利用表面等离子体共振进行配体垂钓,结果表明HPr与大肠杆菌提取物中的一种非磷酸转移酶蛋白结合;该蛋白随后被鉴定为糖原磷酸化酶(GP)。聚丙烯酰胺凝胶电泳的电泳迁移率变动实验也证明了这种高亲和力(结合常数约为10⁸ M⁻¹)、物种特异性的相互作用。平衡超速离心分析表明,HPr变构调节糖原磷酸化酶的寡聚状态。HPr的结合使GP活性提高到对照试验水平的250%。对偶联酶测定的动力学分析表明,HPr与GP的结合导致糖原的Km降低,磷酸盐的Vmax增加,表明是混合型激活。大肠杆菌HPr对大肠杆菌GP活性的刺激作用具有物种特异性,且未磷酸化的HPr比磷酸化的HPr更能激活GP。HPr中特定氨基酸的替换导致GP激活减少;已确定HPr的精氨酸-17、赖氨酸-24、赖氨酸-27、赖氨酸-40、丝氨酸-46、谷氨酰胺-51和赖氨酸-72残基很重要。这种调节GP的新机制首次直接证明了大肠杆菌HPr与碳水化合物代谢调节之间的联系。