Prade L, Huber R, Manoharan T H, Fahl W E, Reuter W
Max-Planck-Institut für Biochemie, Abt. Strukturforschung, Martinsried, Germany.
Structure. 1997 Oct 15;5(10):1287-95. doi: 10.1016/s0969-2126(97)00281-5.
Glutathione S-transferases (GSTs) are detoxification enzymes, found in all aerobic organisms, which catalyse the conjugation of glutathione with a wide range of hydrophobic electrophilic substrates, thereby protecting the cell from serious damage caused by electrophilic compounds. GSTs are classified into five distinct classes (alpha, mu, pi, sigma and theta) by their substrate specificity and primary structure. Human GSTs are of interest because tumour cells show increased levels of expression of single classes of GSTs, which leads to drug resistance. Structural differences between classes of GST can therefore be utilised to develop new anti-cancer drugs. Many mutational and structural studies have been carried out on the mu and alpha classes of GST to elucidate the reaction mechanism, whereas knowledge about the pi class is still limited.
We have solved the structures of the pi class GST hP1-1 in complex with its substrate, glutathione, a transition-state complex, the Meisenheimer complex, and an inhibitor, S-(rho-bromobenzyl)-glutathione, and refined them to resolutions of 1.8 A, 2.0 A and 1.9 A, respectively. All ligand molecules are well-defined in the electron density. In all three structures, an additionally bound N-morpholino-ethansulfonic acid molecule from the buffer solution was found.
In the structure of the GST-glutathione complex, two conserved water molecules are observed, one of which hydrogen bonds directly to the sulphur atom of glutathione and the other forms hydrogen bonds with residues around the glutathione-binding site. These water molecules are absent from the structure of the Meisenheimer complex bound to GST, implicating that deprotonation of the cysteine occurs during formation of the ternary complex which involves expulsion of the inner bound water molecule. The comparison of our structures with known mu class GST structures show differences in the location of the electrophile-binding site (H-site), explaining the different substrate specificities of the two classes. Fluorescence measurements are in agreement with the position of the N-morpholino-ethansulfonic acid, close to Trp28, identifying a possible ligandin-substrate binding site.
谷胱甘肽S-转移酶(GSTs)是解毒酶,存在于所有需氧生物中,它催化谷胱甘肽与多种疏水性亲电底物的结合,从而保护细胞免受亲电化合物造成的严重损伤。根据底物特异性和一级结构,GSTs可分为五个不同的类别(α、μ、π、σ和θ)。人类GSTs备受关注,因为肿瘤细胞中单一类别GSTs的表达水平升高,这会导致耐药性。因此,不同类别GSTs之间的结构差异可用于开发新的抗癌药物。已经对μ和α类GSTs进行了许多突变和结构研究以阐明反应机制,而关于π类的知识仍然有限。
我们解析了π类GST hP1-1与其底物谷胱甘肽、过渡态复合物、迈森海默复合物以及抑制剂S-(对溴苄基)-谷胱甘肽形成的复合物的结构,并分别将它们精修至1.8 Å、2.0 Å和1.9 Å的分辨率。所有配体分子在电子密度图中都清晰可辨。在所有这三种结构中,都发现了来自缓冲溶液的一个额外结合的N-吗啉代乙磺酸分子。
在GST-谷胱甘肽复合物的结构中,观察到两个保守水分子,其中一个直接与谷胱甘肽的硫原子形成氢键,另一个与谷胱甘肽结合位点周围的残基形成氢键。与GST结合的迈森海默复合物的结构中没有这些水分子,这意味着在三元复合物形成过程中半胱氨酸发生去质子化,这涉及到内部结合水分子的排出。我们的结构与已知的μ类GST结构的比较显示亲电试剂结合位点(H位点)的位置存在差异,这解释了这两类的不同底物特异性。荧光测量结果与N-吗啉代乙磺酸靠近色氨酸28的位置一致,确定了一个可能的配体-底物结合位点。