Suppr超能文献

突触后GABA能抑制的不同成分对兴奋性突触后电位(EPSP)中NMDA成分的调节:梨状皮层的计算机模拟分析

Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex.

作者信息

Kapur A, Lytton W W, Ketchum K L, Haberly L B

机构信息

Neuroscience Program, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

J Neurophysiol. 1997 Nov;78(5):2546-59. doi: 10.1152/jn.1997.78.5.2546.

Abstract

Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. J. Neurophysiol. 78: 2546-2559, 1997. Physiological analysis in the companion paper demonstrated that gamma-aminobutyric acid-A (GABAA)-mediated inhibition in piriform cortex is generated by circuits that are largely independent in apical dendritic and somatic regions of pyramidal cells and that GABAA-mediated inhibitory postsynaptic currents (IPSCs) in distal dendrites have a slower time course than those in the somatic region. This study used modeling methods to explore these characteristics of GABAA-mediated inhibition with respect to regulation of the N-methyl--aspartate (NMDA) component of excitatory postsynaptic potentials. Such regulation is relevant to understanding NMDA-dependent long-term potentiation (LTP) and the integration of repetitive synaptic inputs that can activate the NMDA component as well as pathological processes that can be activated by overexpression of the NMDA component. A working hypothesis was that the independence and differing properties of IPSCs in apical dendritic and somatic regions provide a means whereby the NMDA component and other dendritic processes can be controlled by way of GABAergic tone without substantially altering system excitability. The analysis was performed on a branched compartmental model of a pyramidal cell in piriform cortex constructed with physiological and anatomic data derived by whole cell patch recording. Simulations with the model revealed that NMDA expression is more effectively blocked by the slow GABAA component than the fast. Because the slow component is present in greater proportion in apical dendritic than somatic regions, this characteristic would increase the capacity of dendritic IPSCs to regulate NMDA-mediated processes. The simulations further revealed that somatic-region GABAergic inhibition can regulate the generation of action potentials with little effect on the NMDA component generated by afferent fibers in apical dendrites. As a result, if expression of the NMDA component or other dendritic processes were enabled by selective block of dendritic inhibition, for example, by centrifugal fiber systems that may regulate learning and memory, the somatic-region IPSC could preserve system stability through feedback regulation of firing without counteracting the effect of the dendritic-region block. Simulations with paired inputs revealed that the dendritic GABAA-mediated IPSC can regulate the extent to which a strong excitatory input facilitates the NMDA component of a concurrent weak input, providing a possible mechanism for control of "associative LTP" that has been demonstrated in this system. Postsynaptic GABAB-mediated inhibition had less effect on the NMDA component than either the fast or slow GABAA components. Depolarization from a concomitant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component also was found to have comparatively little effect on current through the NMDA channel because of its brief time course.

摘要

突触后GABA能抑制的不同成分对兴奋性突触后电位(EPSP)中NMDA成分的调节:梨状皮层的计算机模拟分析。《神经生理学杂志》78: 2546 - 2559, 1997年。配套论文中的生理学分析表明,梨状皮层中γ-氨基丁酸A(GABAA)介导的抑制是由在锥体细胞顶树突和胞体区域基本独立的回路产生的,并且远端树突中GABAA介导的抑制性突触后电流(IPSC)的时程比胞体区域的慢。本研究使用建模方法来探索GABAA介导的抑制在调节兴奋性突触后电位的N-甲基-D-天冬氨酸(NMDA)成分方面的这些特性。这种调节对于理解NMDA依赖性长时程增强(LTP)以及能够激活NMDA成分的重复性突触输入的整合,以及由NMDA成分过表达激活的病理过程都具有重要意义。一个可行的假设是,顶树突和胞体区域IPSC的独立性和不同特性提供了一种方式,通过这种方式,NMDA成分和其他树突过程可以通过GABA能张力进行控制,而不会显著改变系统兴奋性。分析是在一个基于梨状皮层锥体细胞的分支房室模型上进行的,该模型构建时使用了通过全细胞膜片钳记录获得的生理和解剖数据。用该模型进行的模拟显示,慢GABAA成分比快GABAA成分更有效地阻断NMDA的表达。由于慢成分在顶树突区域比胞体区域所占比例更大,这一特性将增加树突IPSC调节NMDA介导过程的能力。模拟还进一步显示,胞体区域的GABA能抑制可以调节动作电位的产生,而对顶树突中传入纤维产生的NMDA成分影响很小。因此,如果通过选择性阻断树突抑制(例如通过可能调节学习和记忆的离心纤维系统)使NMDA成分或其他树突过程得以表达,胞体区域的IPSC可以通过对放电的反馈调节来维持系统稳定性,而不会抵消树突区域阻断的作用。成对输入的模拟显示,树突GABAA介导的IPSC可以调节强兴奋性输入促进同时存在弱输入的NMDA成分的程度,为该系统中已证明的“联合LTP”的控制提供了一种可能机制。突触后GABAB介导的抑制对NMDA成分的影响比快或慢GABAA成分都小。由于伴随的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)成分的去极化时程较短,也发现其对通过NMDA通道的电流影响相对较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验