Suppr超能文献

用于测量生物可利用亚砷酸盐和亚锑酸盐的重组发光细菌。

Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite.

作者信息

Tauriainen S, Karp M, Chang W, Virta M

机构信息

Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.

出版信息

Appl Environ Microbiol. 1997 Nov;63(11):4456-61. doi: 10.1128/aem.63.11.4456-4461.1997.

Abstract

Luminescent bacterial strains for the measurement of bioavailable arsenite and antimony were constructed. The expression of firefly luciferase was controlled by the regulatory unit of the ars operon of Staphylococcus aureus plasmid pI258 in recombinant plasmid pTOO21, with S. aureus RN4220, Bacillus subtilis BR151, and Escherichia coli MC1061 as host strains. Strain RN4220(pTOO21) was found to be the most sensitive for metal detection responding to arsenite, antimonite, and cadmium, the lowest detectable concentrations being 100, 33, and 330 nM, respectively. Strains BR151(pTOO21) and MC1061(pTOO21) responded to arsenite, arsenate, antimonite, and cadmium, the lowest detectable concentrations being 3.3 and 330 microM and 330 and 330 nM with BR151(pTOO21), respectively, and 3.3, 33, 3.3, and 33 microM with MC1061(pTOO21), respectively. In the absence of the mentioned ions, the expression of luciferase was repressed and only a small amount of background light was emitted. Other ions did not notably interfere with the measurement in any of the strains tested. Freeze-drying of the cells did not decrease the sensitivity of the detection of arsenite; however, the induction coefficients were somewhat lower.

摘要

构建了用于测定生物可利用亚砷酸盐和锑的发光细菌菌株。在重组质粒pTOO21中,萤火虫荧光素酶的表达由金黄色葡萄球菌质粒pI258的ars操纵子调控单元控制,以金黄色葡萄球菌RN4220、枯草芽孢杆菌BR151和大肠杆菌MC1061作为宿主菌株。发现菌株RN4220(pTOO21)对亚砷酸盐、亚锑酸盐和镉的金属检测最为敏感,最低可检测浓度分别为100 nM、33 nM和330 nM。菌株BR151(pTOO21)和MC1061(pTOO21)对亚砷酸盐、砷酸盐、亚锑酸盐和镉有反应,BR151(pTOO21)的最低可检测浓度分别为3.3 μM和330 nM以及330 nM和330 nM,而MC1061(pTOO21)的最低可检测浓度分别为3.3 μM、33 μM、3.3 μM和33 μM。在不存在上述离子的情况下,荧光素酶的表达受到抑制,仅发出少量背景光。其他离子在任何测试菌株中均未对测量产生显著干扰。细胞冻干并未降低亚砷酸盐检测的灵敏度;然而,诱导系数略低。

相似文献

1
Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite.
Appl Environ Microbiol. 1997 Nov;63(11):4456-61. doi: 10.1128/aem.63.11.4456-4461.1997.
2
Luminescent bacterial sensor for cadmium and lead.
Biosens Bioelectron. 1998 Oct 15;13(9):931-8. doi: 10.1016/s0956-5663(98)00027-x.
3
Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
J Bacteriol. 1992 Jun;174(11):3684-94. doi: 10.1128/jb.174.11.3684-3694.1992.
9
The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite.
J Bacteriol. 1998 Apr;180(7):1655-61. doi: 10.1128/JB.180.7.1655-1661.1998.
10
The ars operon of Escherichia coli confers arsenical and antimonial resistance.
J Bacteriol. 1995 Feb;177(4):981-6. doi: 10.1128/jb.177.4.981-986.1995.

引用本文的文献

1
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
2
As Selectively Induces a Disorder-to-Order Transition in the Metalloid Binding Region of the AfArsR Protein.
J Am Chem Soc. 2024 Jun 26;146(25):17009-17022. doi: 10.1021/jacs.3c11665. Epub 2024 May 31.
3
Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic.
Microbiol Spectr. 2023 Aug 17;11(4):e0043223. doi: 10.1128/spectrum.00432-23. Epub 2023 Jun 7.
5
Development of a novel heterologous β-lactam-specific whole-cell biosensor in .
J Biol Eng. 2020 Jul 31;14:21. doi: 10.1186/s13036-020-00243-4. eCollection 2020.
6
Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China.
Front Microbiol. 2019 Aug 20;10:1916. doi: 10.3389/fmicb.2019.01916. eCollection 2019.
7
Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection.
Appl Environ Microbiol. 2019 May 16;85(11). doi: 10.1128/AEM.00694-19. Print 2019 Jun 1.
8
Insights Into Arsenite and Arsenate Uptake Pathways Using a Whole Cell Biosensor.
Front Microbiol. 2018 Oct 2;9:2310. doi: 10.3389/fmicb.2018.02310. eCollection 2018.

本文引用的文献

1
Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation.
Science. 1990 Aug 17;249(4970):778-81. doi: 10.1126/science.249.4970.778.
2
THE CHEMISTRY OF LIGHT EMISSION.
Adv Enzymol Relat Subj Biochem. 1963;25:119-66. doi: 10.1002/9780470122709.ch3.
4
The role of arsenic-thiol interactions in metalloregulation of the ars operon.
J Biol Chem. 1996 Apr 19;271(16):9291-7. doi: 10.1074/jbc.271.16.9291.
5
Transduction in microbial biosensors using multiplexed bioluminescence.
Biosens Bioelectron. 1996;11(3):207-14. doi: 10.1016/0956-5663(96)88407-7.
6
Effects of chemical speciation in growth media on the toxicity of mercury(II).
Appl Environ Microbiol. 1993 May;59(5):1507-14. doi: 10.1128/aem.59.5.1507-1514.1993.
7
luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
FEMS Microbiol Lett. 1993 Jun 15;110(2):231-8. doi: 10.1111/j.1574-6968.1993.tb06325.x.
8
Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids.
Mol Microbiol. 1993 May;8(4):637-42. doi: 10.1111/j.1365-2958.1993.tb01607.x.
9
Bioluminescent sensors for detection of bioavailable Hg(II) in the environment.
Appl Environ Microbiol. 1993 Sep;59(9):3083-90. doi: 10.1128/aem.59.9.3083-3090.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验