Suppr超能文献

Ventral and dorsal striatal cholinergic neurons have different sensitivities to kainic acid.

作者信息

Guevara B H, Hoffmann I S, Cubeddu L X

机构信息

Department of Pharmacology, School of Pharmacy, Central University of Venezuela, Caracas.

出版信息

Neurochem Int. 1997 Nov;31(5):723-30. doi: 10.1016/s0197-0186(97)00003-x.

Abstract

The present study was conducted to investigate the sensitivity of the cholinergic elements of ventral and dorsal striatal regions of the rat brain to the neurotoxin kainic acid (KA). Cholinergic activity was assessed by determining choline-acetyltransferase activity (CAT) and by measurements of acetylcholine (Ach) release from slices prelabeled with [3H]-choline. Direct stereotaxic injections of high-dose KA (4 micrograms/2 microliters) into specific brain regions, reduced CAT in caudate putamen (CP) by 91 +/- 1%, in nucleus accumbens (Nac) by 71 +/- 6%, but CAT in the olfactory tubercle (OT) was not affected by KA. The effects of KA on CP CAT were dose- and volume-dependent. In the OT, KA failed to affect CAT at low, moderate or high doses. Slices obtained from CP injected with KA (3 days prior) showed a 90% reduction in the electrically evoked release of [3H]-transmitter release; however, KA had no effect on transmitter release from OT. These results indicate that KA spares the cholinergic elements of the OT, and reveal the existence of marked differences in excitotoxic action of KA between ventral and dorsal striatal regions and among regions of the ventral striatum. Kainic acid preferentially damages neuronal cell bodies, dendrites and terminals intrinsic within the structures injected, with little or no effect on afferent axons and terminal boutons. Therefore, we propose that most of the Ach present in the OT may be within afferent axons and axon terminals. In the CP and NAc, KA lesions reflect loss of intrinsic cholinergic neurons. In addition, variable levels of excitatory inputs and of excitatory receptors, of the mechanisms available to reduce elevated intracellular calcium concentrations and of the levels of free-radical scavenging resources, also could account for the differences in KA neurotoxicity between OT and CP.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验