Suppr超能文献

Endothelium-dependent frequency modulation of Ca2+ signalling in individual vascular smooth muscle cells of the rat.

作者信息

Kasai Y, Yamazawa T, Sakurai T, Taketani Y, Iino M

机构信息

Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan.

出版信息

J Physiol. 1997 Oct 15;504 ( Pt 2)(Pt 2):349-57. doi: 10.1111/j.1469-7793.1997.349be.x.

Abstract
  1. We visualized intracellular Ca2+ concentration ([Ca2+]i) changes, using fluo-3 as an indicator, of individual vascular smooth muscle cells and endothelial cells within intact rat tail arteries by confocal microscopy. 2. Using a piezo-driven objective, we focused on endothelial and smooth muscle cell layers alternately to obtain Ca2+ images of their cells. In the presence of 1 microM acetylcholine (ACh), individual endothelial cells responded with intermittent increases in the [Ca2+]i (Ca2+ oscillations). At the same time, the frequency of Ca2+ oscillations in smooth muscle cells induced by electrical stimulation of the perivascular sympathetic nerve was greatly decreased. 3. A [Ca2+]i rise during the oscillations in the endothelial cells propagated in the form of a wave along the long axis of the cells. 4. In the presence of a NO synthase inhibitor, no significant inhibitory effect of ACh on the Ca2+ signalling in the vascular smooth muscle cells was detected, although the Ca2+ oscillations in the endothelial cells persisted. 5. The inhibitory effect of ACh on the frequency of Ca2+ oscillations in the vascular smooth muscle cells was mimicked by 1 microM sodium nitroprusside, a NO donor. 6. These results indicate that Ca2+ waves and oscillations in vascular endothelial cells regulate NO production, which modulates vascular tone by decreasing the frequency of Ca2+ oscillations in smooth muscle cells activated by sympathetic agonists.
摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b9c/1159915/db96e99e3830/jphysiol00378-0104-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验