Tykocinski M, Shepherd R K, Clark G M
Department of Otolaryngology, The University of Melbourne, East Melbourne, Vic., Australia.
Hear Res. 1997 Oct;112(1-2):147-57. doi: 10.1016/s0378-5955(97)00117-2.
We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fixed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 microC/phase (2 mA, 170 micros/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a 1-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue.
我们之前已经表明,使用连续呈现的电荷平衡双相电流脉冲对听神经进行急性电刺激会导致听神经兴奋性长期下降(Tykocinski等人,《听觉研究》88 (1995),124 - 142)。这项研究还表明,当使用占空比为50%的等效脉冲序列时,电诱发听觉脑干反应(EABR)的幅度下降会减少。在本研究中,我们扩展了这项工作,以比较使用固定幅度电脉冲序列和幅度调制(AM)脉冲序列进行电刺激的效果,AM脉冲序列能更准确地模拟人工耳蜗中使用的动态刺激模式。在使用电荷平衡双相电流脉冲的AM序列对豚鼠进行急性刺激后,记录其EABR。将刺激引起的EABR降低程度与我们之前使用固定幅度连续脉冲序列或占空比为50%、在400或1000脉冲/秒下以0.34微库仑/相位(2毫安,170微秒/相位)运行的脉冲序列的结果进行比较(Tykocinski等人,《听觉研究》88 (1995) 124 - 142)。以相同速率运行的AM脉冲序列基于使用SPEAK语音处理策略、暴露于4人嘈杂语音的Nucleus Mini - 22人工耳蜗最广泛激活电极的1秒序列,并输送与固定幅度占空比为50%的脉冲序列相同的总电荷量。两小时的连续刺激导致听神经兴奋性显著降低,且与刺激速率有关,并且在长达6小时的监测期内仅显示出轻微的刺激后恢复。在使用占空比为50%的等效脉冲序列或AM脉冲序列进行2或4小时刺激后,观察到EABR的降低明显较少,并且通常能迅速且完全恢复到刺激前水平。对于400和1000脉冲/秒的刺激,连续波形与占空比为50%的波形以及AM波形之间的恢复程度差异在统计学上均具有显著性。与我们之前的结果一致,使用AM脉冲序列观察到的刺激变化与速率有关,较高速率的刺激会引起更广泛的刺激诱导变化。目前的研究结果表明,虽然刺激引起的神经兴奋性降低取决于刺激诱导的神经元活动程度,但使用AM刺激模式可进一步减轻刺激后的神经疲劳。