Suppr超能文献

心电图动态研究的新方法:QRS波群不规则时间序列的提取与分析。

New approach to studies on ECG dynamics: extraction and analyses of QRS complex irregularity time series.

作者信息

Zhang X S, Zhu Y S, Zhang X J

机构信息

Department of Instrumentation Engineering, Shanghai Jiao Tong University, China.

出版信息

Med Biol Eng Comput. 1997 Sep;35(5):467-73. doi: 10.1007/BF02525525.

Abstract

How to extract information intensively from ECGs for the diagnosis of cardiovascular diseases and assessment of heart function is a topical subject. Using a method based on the wavelet transform to calculate the irregularity of the QRS complex, which may relate to inotropy, the QRS complex irregularity time series is successfully extracted from original ECG signals. This provides a new approach to studies of ECG dynamics. With the help of non-linear dynamics theory, the QRS complex irregularity time series of eight subjects from the MIT/BIH arrhythmia database are studied qualitatively and quantitatively, and the characteristics of ECG dynamics are analysed extensively. The power spectrum, phase portrait, correlation dimension, largest Lyapunov exponent, time-dependent divergence exponent and complexity measure all verify the fact that ECG dynamics are dominated by an underlying 5-6-dimensional non-linear chaotic system, whose complexity measure is about 0.7. The QRS complex irregularity time series contains abundant information about all parts of the heart and the regulation of the autonomic nervous system, and so further analyses are of great potential theoretical and clinical significance to patho-physiology studies and ambulatory monitoring.

摘要

如何从心电图中密集提取信息以用于心血管疾病的诊断和心脏功能评估是一个热门课题。使用基于小波变换的方法来计算QRS波群的不规则性,这可能与心肌收缩力有关,成功地从原始心电图信号中提取了QRS波群不规则性时间序列。这为心电图动力学研究提供了一种新方法。借助非线性动力学理论,对麻省理工学院/波士顿儿童医院心律失常数据库中八名受试者的QRS波群不规则性时间序列进行了定性和定量研究,并广泛分析了心电图动力学特征。功率谱、相图、关联维数、最大Lyapunov指数、时间相关发散指数和复杂度度量均证实了心电图动力学由一个潜在的5至6维非线性混沌系统主导这一事实,其复杂度度量约为0.7。QRS波群不规则性时间序列包含有关心脏各部分以及自主神经系统调节的丰富信息,因此进一步分析对病理生理学研究和动态监测具有巨大的潜在理论和临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验