Suppr超能文献

塞尔默规则的分子基础:红霉素聚酮合酶链延伸中缩合步骤的立体化学

The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase.

作者信息

Weissman K J, Timoney M, Bycroft M, Grice P, Hanefeld U, Staunton J, Leadlay P F

机构信息

Cambridge Center for Molecular Recognition, Department of Organic Chemistry, University of Cambridge, U.K.

出版信息

Biochemistry. 1997 Nov 11;36(45):13849-55. doi: 10.1021/bi971566b.

Abstract

Modular polyketide synthases (PKSs), for example, the 6-deoxyerythronolide B synthase (DEBS) responsible for synthesis of the aglycone core of the macrolide antibiotic erythromycin, generate an impressive diversity of asymmetric centers in their polyketide products. However, as noted by Celmer, macrolides have the same absolute configuration at all comparable stereocenters. Understanding how the stereochemistry of chain extension in controlled is therefore crucial to determining the common mechanism of action of these enzymes. We aimed to elucidate the molecular basis of Celmer's rules through in vitro studies with DEBS 1-TE, a bimodular derivative of DEBS from Saccharopolyspora erythraea, which uses (2S)-methylmalonyl-coenzyme. A to produce both D- and L-methyl centers in its triketide lactone product. We show here that condensation of (2S)-methylmalonyl-CoA in module 2 proceeds with decarboxylative inversion without cleavage of the C-H bond adjacent to the methyl group; in contrast, in module 1 the chain extension process involves loss of the hydrogen attached to C-2 of the methylmalonyl-CoA precursor. The production of the D-methyl center in module 2 without loss of hydrogen from the asymmetric center of the (2S)-methylmalonyl-CoA establishes that condensation takes place with inversion of configuration as in fatty acid biosynthesis. The loss of the key hydrogen from the (2S)-methylmalonyl-CoA to produce the L-methyl center generated in module 1 implies that an additional obligatory epimerization step takes place in that module. The nature and timing of the epimerization remain to be established.

摘要

例如,模块化聚酮合酶(PKSs),负责合成大环内酯类抗生素红霉素苷元核心的6-脱氧红霉内酯B合酶(DEBS),在其聚酮产物中产生了令人印象深刻的不对称中心多样性。然而,正如塞尔默所指出的,大环内酯类在所有可比的立体中心具有相同的绝对构型。因此,了解链延伸的立体化学是如何被控制的,对于确定这些酶的共同作用机制至关重要。我们旨在通过对DEBS 1-TE进行体外研究来阐明塞尔默规则的分子基础,DEBS 1-TE是来自糖多孢红霉菌的DEBS的双模块衍生物,它使用(2S)-甲基丙二酰辅酶A在其三酮内酯产物中产生D-和L-甲基中心。我们在此表明,模块2中(2S)-甲基丙二酰辅酶A的缩合反应是通过脱羧反转进行的,而不会断裂与甲基相邻的C-H键;相反,在模块1中,链延伸过程涉及到与甲基丙二酰辅酶A前体C-2相连的氢的丢失。模块2中D-甲基中心的产生而没有从(2S)-甲基丙二酰辅酶A的不对称中心丢失氢,这表明缩合反应是像脂肪酸生物合成那样以构型反转的方式进行的。从(2S)-甲基丙二酰辅酶A中丢失关键氢以产生模块1中生成的L-甲基中心,这意味着在该模块中发生了一个额外的必需的差向异构化步骤。差向异构化的性质和时间还有待确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验