Ray Katherine A, Lutgens Joshua D, Bista Ramesh, Zhang Jie, Desai Ronak R, Hirsch Melissa, Miyazawa Takeshi, Cordova Antonio, Keatinge-Clay Adrian T
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
Nat Commun. 2024 Aug 1;15(1):6485. doi: 10.1038/s41467-024-50844-6.
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. The recently updated module boundary has been successful for engineering short synthases, yet larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases to test every module combination of the pikromycin synthase. Anticipated products are detected from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. We determine ketosynthase gatekeeping and module-skipping are the principal impediments to obtaining functional synthases. The platform is also employed to construct active hybrid synthases by incorporating modules from the erythromycin, spinosyn, and rapamycin assembly lines. The relaxed gatekeeping of a ketosynthase in the rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
聚酮化合物装配线的模块化性质及其产物的重要性使其成为组合工程的主要目标。最近更新的模块边界在工程化短合成酶方面取得了成功,但使用更新边界构建的更大合成酶尚未得到研究。在此,我们描述了我们设计和实施的一个类似BioBricks的平台,用于快速构建5种三酮合成酶、25种四酮合成酶和125种五酮合成酶,以测试苦霉素合成酶的每种模块组合。在60%的三酮合成酶、32%的四酮合成酶和6.4%的五酮合成酶中检测到预期产物。我们确定酮合成酶守门和模块跳跃是获得功能性合成酶的主要障碍。该平台还用于通过整合来自红霉素、多杀菌素和雷帕霉素装配线的模块来构建活性杂合合成酶。在追求生产定制聚酮化合物的过程中,雷帕霉素合成酶中酮合成酶的宽松守门尤其令人鼓舞。