Suppr超能文献

区室化的丧失导致过氧化物酶体缺陷酵母细胞中赖氨酸生物合成的调控异常。

Loss of compartmentalization causes misregulation of lysine biosynthesis in peroxisome-deficient yeast cells.

作者信息

Breitling Rainer, Sharif Orzala, Hartman Michelle L, Krisans Skaidrite K

机构信息

Department of Biology, San Diego State University, San Diego, California 92182, USA.

出版信息

Eukaryot Cell. 2002 Dec;1(6):978-86. doi: 10.1128/EC.1.6.978-986.2002.

Abstract

To characterize the metabolic role of peroxisomes in yeast cells under physiological conditions, we performed a comprehensive meta-analysis of published microarray data. Previous studies of yeast peroxisomes have mainly been focused on the function of peroxisomes under extreme conditions, such as growth on oleate or methanol as the sole carbon source, and may therefore not be representative of the normal physiological role of yeast peroxisomes. Surprisingly, our analysis of the microarray data reveals that the only pathway responding to peroxisome deficiency in mid-log phase is lysine biosynthesis, whereas classical peroxisomal pathways such as beta-oxidation are unaffected. We show that the upregulation of lysine biosynthesis genes in peroxisome-deficient yeasts shares many characteristics with the physiological response to lysine starvation. We provide data that suggest that this is the result of a "pathological" stimulation of the Lys14p transcriptional activator by the pathway intermediate aminoadipate semialdehyde. Mistargeting of the peroxisomal lysine pathway to the cytosol increases the active concentration of aminoadipate semialdehyde, which is no longer contained in the peroxisome and can now activate Lys14p at much lower levels than in wild-type yeasts. This is the first well-documented example of pathway misregulation in response to peroxisome deficiency and will be useful in understanding the phenotypic details of human peroxisome-deficient patients (Zellweger syndrome).

摘要

为了表征生理条件下酵母细胞中过氧化物酶体的代谢作用,我们对已发表的微阵列数据进行了全面的荟萃分析。先前关于酵母过氧化物酶体的研究主要集中在极端条件下过氧化物酶体的功能,例如以油酸或甲醇作为唯一碳源生长时的功能,因此可能无法代表酵母过氧化物酶体的正常生理作用。令人惊讶的是,我们对微阵列数据的分析表明,对数中期对过氧化物酶体缺陷作出反应的唯一途径是赖氨酸生物合成,而经典的过氧化物酶体途径如β-氧化则未受影响。我们表明,过氧化物酶体缺陷酵母中赖氨酸生物合成基因的上调与对赖氨酸饥饿的生理反应具有许多共同特征。我们提供的数据表明,这是途径中间产物氨基己二酸半醛对Lys14p转录激活因子进行“病理性”刺激的结果。过氧化物酶体赖氨酸途径错误定位到细胞质中会增加氨基己二酸半醛的活性浓度,该物质不再存在于过氧化物酶体中,现在可以在比野生型酵母低得多的水平下激活Lys14p。这是第一个有充分记录的因过氧化物酶体缺陷而导致途径失调的例子,将有助于理解人类过氧化物酶体缺陷患者(泽尔韦格综合征)的表型细节。

相似文献

2
Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype.
Mol Cell Biol. 2003 Aug;23(16):5947-57. doi: 10.1128/MCB.23.16.5947-5957.2003.
3
Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance.
J Cell Sci. 2006 Feb 15;119(Pt 4):636-45. doi: 10.1242/jcs.02776. Epub 2006 Jan 31.
8
Yeast peroxisomes: How are they formed and how do they grow?
Int J Biochem Cell Biol. 2018 Dec;105:24-34. doi: 10.1016/j.biocel.2018.09.019. Epub 2018 Sep 27.
9
Regulation of peroxisome size and number by fatty acid beta -oxidation in the yeast yarrowia lipolytica.
J Biol Chem. 2000 Jun 30;275(26):20168-78. doi: 10.1074/jbc.M909285199.
10
[Molecular mechanisms of peroxisome biogenesis in yeasts].
Mol Biol (Mosk). 2012 Jan-Feb;46(1):14-30.

引用本文的文献

1
Integrative Omics reveals changes in the cellular landscape of peroxisome-deficient yeast cells.
Microb Cell. 2025 Feb 20;12:9-33. doi: 10.15698/mic2025.02.842. eCollection 2025.
2
Mitochondria, Peroxisomes and Beyond-How Dual Targeting Regulates Organelle Tethering.
Contact (Thousand Oaks). 2024 Sep 28;7:25152564241264254. doi: 10.1177/25152564241264254. eCollection 2024 Jan-Dec.
3
Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles.
PLoS Biol. 2024 Feb 20;22(2):e3002508. doi: 10.1371/journal.pbio.3002508. eCollection 2024 Feb.
5
The proteomic landscape of genome-wide genetic perturbations.
Cell. 2023 Apr 27;186(9):2018-2034.e21. doi: 10.1016/j.cell.2023.03.026. Epub 2023 Apr 19.
6
Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production.
Front Bioeng Biotechnol. 2023 Feb 23;11:1132244. doi: 10.3389/fbioe.2023.1132244. eCollection 2023.
7
The biochemical basis of mitochondrial dysfunction in Zellweger Spectrum Disorder.
EMBO Rep. 2021 Oct 5;22(10):e51991. doi: 10.15252/embr.202051991. Epub 2021 Aug 5.
8
Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31789-31799. doi: 10.1073/pnas.2013968117. Epub 2020 Dec 2.
9
Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae.
Sci Rep. 2017 Sep 19;7(1):11868. doi: 10.1038/s41598-017-11942-2.

本文引用的文献

1
Pex18p is constitutively degraded during peroxisome biogenesis.
J Biol Chem. 2001 Dec 14;276(50):47684-9. doi: 10.1074/jbc.M106823200. Epub 2001 Oct 4.
2
Molecular evidence for the early colonization of land by fungi and plants.
Science. 2001 Aug 10;293(5532):1129-33. doi: 10.1126/science.1061457.
3
The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction.
J Mol Neurosci. 2001 Apr-Jun;16(2-3):289-97; discussion 317-21. doi: 10.1385/JMN:16:2-3:289.
4
yMGV: a database for visualization and data mining of published genome-wide yeast expression data.
Nucleic Acids Res. 2001 Jul 1;29(13):E63-3. doi: 10.1093/nar/29.13.e63.
6
Biogenesis and function of peroxisomes and glycosomes.
Mol Biochem Parasitol. 2001 Jun;115(1):19-28. doi: 10.1016/s0166-6851(01)00261-4.
8
Environmental response of yeast peroxisomes. Aspects of organelle assembly and degradation.
Cell Biochem Biophys. 2000;32 Spring:51-61. doi: 10.1385/cbb:32:1-3:51.
9
Mouse models for peroxisome biogenesis disorders.
Cell Biochem Biophys. 2000;32 Spring:229-37. doi: 10.1385/cbb:32:1-3:229.
10
Peroxisome biogenesis in the yeast Yarrowia lipolytica.
Cell Biochem Biophys. 2000;32 Spring:21-6. doi: 10.1385/cbb:32:1-3:21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验