Shackleton C H, Roitman E, Phillips A, Chang T
Children's Hospital Oakland Research Institute, California 94609, USA.
Steroids. 1997 Oct;62(10):665-73. doi: 10.1016/s0039-128x(97)00065-2.
The basis of a potential method for confirming intake of four natural androgens (testosterone, epitestosterone, dihydrotestosterone, and dehydroepiandrosterone is presented. The method relies on isolating from urine a steroid fraction containing androstenediol and androstanediol metabolites of these natural steroids and analyzing their 13C content by gas chromatography, combustion, isotope ratio mass spectrometry. The steroids were recovered from urine by conjugate hydrolysis with a Helix pomatia preparation (sulfatase and beta-glucuronidase), Girard T reagent separation to obtain a nonketonic fraction, and Sephadex LH-20 chromatography for purification. Metabolites appropriate for all of the natural steroids could be separated (as diacetates) by gas chromatography on a DB-17 capillary column viz.: 5 alpha (and beta)-androstane-3 alpha,17 alpha-diol (epitestosterone as precursor); 5 alpha (and beta)-androstane-3 alpha,17 beta-diol (testosterone as precursor); 5-androstene-3 beta,17 beta-diol (dehydroepiandrosterone precursor); and 5 alpha-androstane-3 alpha,17 beta- (and 17 alpha-) diol (dihydrotestosterone precursor). Measurement of the 13C content of the specific analytes after ingestion of the androgen precursors demonstrated a lowering of delta 13C/1000 value compared to normal values. Typically, in the male individual studied, delta 13C/1000 values for all components were -26 to -27 before drug administration and -29 to -30 at 6 h after, the latter values reflecting those obtaining for commercial synthetic steroid compared to in vivo synthesized steroid. While generally the metabolism of the steroids was as expected, this was not the case for 5 alpha-dihydrotestosterone. A major metabolite was 5 alpha-androstane-3 alpha,17 alpha-diol, which had presumably been formed by 17 beta/17 alpha isomerization, a process previously known for unnatural anabolics but not for natural hormones. The isolation, purification, and isotope ratio mass spectrometry techniques described may form the basis of a general method for confirming natural steroid misuse by sports participants.
本文介绍了一种用于确认四种天然雄激素(睾酮、表睾酮、二氢睾酮和脱氢表雄酮)摄入情况的潜在方法的基础。该方法依赖于从尿液中分离出含有这些天然类固醇的雄烯二醇和雄烷二醇代谢物的类固醇组分,并通过气相色谱、燃烧、同位素比值质谱法分析其13C含量。通过用蛾螺制剂(硫酸酯酶和β-葡萄糖醛酸酶)进行结合物水解从尿液中回收类固醇,用吉拉德T试剂分离以获得非酮组分,并通过Sephadex LH-20柱色谱法进行纯化。适合所有天然类固醇的代谢物(作为二乙酸酯)可以通过在DB-17毛细管柱上进行气相色谱分离,即:5α(和β)-雄烷-3α,17α-二醇(以前体形式存在的表睾酮);5α(和β)-雄烷-3α,17β-二醇(以前体形式存在的睾酮);5-雄烯-3β,17β-二醇(脱氢表雄酮前体);以及5α-雄烷-3α,17β-(和17α-)二醇(二氢睾酮前体)。摄入雄激素前体后对特定分析物的13C含量进行测量,结果表明与正常值相比,δ13C/1000值降低。通常,在所研究的男性个体中,给药前所有组分的δ13C/1000值为-26至-27,给药后6小时为-29至-30,后一值反映了与体内合成类固醇相比商业合成类固醇的情况。虽然一般来说类固醇的代谢符合预期,但5α-二氢睾酮的情况并非如此。一种主要代谢物是5α-雄烷-3α,17α-二醇,它可能是由17β/17α异构化形成的,这一过程以前已知存在于非天然合成代谢物中,但不存在于天然激素中。所描述的分离、纯化和同位素比值质谱技术可能构成一种用于确认运动员滥用天然类固醇的通用方法的基础。