Suppr超能文献

In vivo production of oligodeoxyribonucleotides of specific sequences: application to antisense DNA.

作者信息

Inouye M, Mao J R, Shimamoto T, Inouye S

机构信息

Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854-5635, USA.

出版信息

Ciba Found Symp. 1997;209:224-33; discussion 233-4. doi: 10.1002/9780470515396.ch17.

Abstract

Retrons, bacterial retroelements found in Gram-negative bacteria, are integrated into the bacterial genome expressing a reverse transcriptase related to eukaryotic reverse transcriptase. The bacterial reverse transcriptases are responsible for the production of multicopy, single-stranded (ms) DNA consisting of a short single-stranded DNA that is attached to an internal guanosine residue of an RNA molecule by a 2',5'-phosphodiester linkage. Reverse transcriptases use an RNA transcript from the retrons, not only as primer, but also as template for msDNA synthesis. By studying the structural requirement, it was found that for msDNA synthesis an internal region of msDNA can be replaced with other sequences. msDNA can thus be used as a vector for in vivo production of an oligodeoxyribonucleotide of a specific sequence. Artificial msDNAs containing a sequence complementary to part of the mRNA for the major outer membrane lipoprotein of Escherichia coli effectively inhibited lipoprotein biosynthesis upon induction of msDNA synthesis. This is the first demonstration of in vivo synthesis of oligodeoxyribonucleotides having antisense function. Since we have previously demonstrated that bacterial retrons are functional in eukaryotes producing msDNA in yeast and in mouse NIH/3T3 fibroblasts, the present system may also be used to produce a specific oligodeoxyribonucleotide inside the cells to regulate eukaryotic gene expression artificially. We also describe a method to produce cDNA to a specific cellular mRNA using the retron system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验