Sargent D J
Mayo Clinic, Cancer Center Statistics, Rochester, MN 55905, USA.
Lifetime Data Anal. 1997;3(1):13-25. doi: 10.1023/a:1009612117342.
Research on methods for studying time-to-event data (survival analysis) has been extensive in recent years. The basic model in use today represents the hazard function for an individual through a proportional hazards model (Cox, 1972). Typically, it is assumed that a covariate's effect on the hazard function is constant throughout the course of the study. In this paper we propose a method to allow for possible deviations from the standard Cox model, by allowing the effect of a covariate to vary over time. This method is based on a dynamic linear model. We present our method in terms of a Bayesian hierarchical model. We fit the model to the data using Markov chain Monte Carlo methods. Finally, we illustrate the approach with several examples.
近年来,对事件发生时间数据的研究方法(生存分析)已有广泛开展。当今使用的基本模型通过比例风险模型(考克斯,1972年)来表示个体的风险函数。通常,假定协变量对风险函数的影响在整个研究过程中是恒定的。在本文中,我们提出一种方法,通过允许协变量的影响随时间变化,来考虑与标准考克斯模型可能存在的偏差。该方法基于动态线性模型。我们以贝叶斯分层模型的形式呈现我们的方法。我们使用马尔可夫链蒙特卡罗方法将模型拟合到数据。最后,我们通过几个例子来说明该方法。