Suppr超能文献

利用干血斑进行聚合酶链反应(PCR)分析对突变小鼠进行快速基因分型。

Rapid genotyping of mutant mice using dried blood spots for polymerase chain reaction (PCR) analysis.

作者信息

Campbell D B, Hess E J

机构信息

Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey 17033, USA.

出版信息

Brain Res Brain Res Protoc. 1997 May;1(2):117-23. doi: 10.1016/s1385-299x(96)00019-0.

Abstract

Spontaneous neurologic mutations in the mouse provide powerful tools for the study of mammalian central nervous system development. The study of mouse neurologic mutants has led to a better understanding of the complex mechanisms involved in the development of the nervous system. Because few of these mutations have been identified, molecular probes distinguishing heterozygotes from homozygotes are generally unavailable. Further, most neurologic mouse mutants breed poorly as homozygotes, making it necessary to breed heterozygotes and select homozygous mutant progeny based on phenotype. The requirement for heterozygous breeding and the lack of molecular markers specific for the mutation have hampered developmental studies because the underlying neurologic perturbations occur before the mutant mice can be identified by phenotype. The recent identification and chromosomal assignment of simple sequence repeats (SSRs), repetitive sequences of DNA found at a high density throughout the mouse genome, provide the tools for mapping mutations in the mouse and for subsequent genotyping of potential mutants prior to phenotype onset. The SSRs are useful because these markers are polymorphic (for review see Weber, J.L., Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. In: K.E. Davies and S.M. Tilghman (Eds.), Genetic and Physical Mapping. Genome Analysis, Vol. I, Cold Spring Harbor Laboratory Press, Plainview, NY, 1990, pp. 159-181 [16]), that is, the size of the individual SSRs differs among strains of mice. Following polymerase chain reaction (PCR) amplification of an SSR and separation of PCR products by polyacrylamide gel electrophoresis, one can easily visualize differences in the size of the PCR product between mouse strains. Many mutations in the mouse arose spontaneously on inbred strains and were subsequently backcrossed onto a different strain. After many generations of congenic backcrosses, the only DNA retained from the original mutant strain is composed of the mutant gene and closely linked regions. Thus, it is possible to cross the mutant strain to a different mouse strain and map the mutation by correlating mutant phenotype to SSRs the same size as the original mutant strain. We have mapped the tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr) mutations using SSRs in backcrossed mouse strains. The SSRs distinguishing mutant from normal strains can then be used to genotype potential mutant pups before the onset of the mutant phenotype. The protocol described below can be adapted to almost any mutation congenically inbred for genotyping. Here we describe a method for selecting primers appropriate for genotyping potential mouse mutants and a rapid protocol for genotype screening. Even with SSRs distinguishing mutant from normal mice, genotyping several mice simultaneously can be a daunting task. This is primarily because the protocols available for preparing DNA for PCR amplification are time-consuming, requiring several purification steps including phenol extractions. Although kits are commercially available for DNA preparation without organic extractions, these kits tend to be expensive. The protocol described is a rapid, inexpensive method of determining the genotype of mice using PCR analysis of dried blood spots. The protocol only requires PCR primers distinguishing among alleles and is therefore ideal for the rapid identification of potential mutants for those mouse mutations which have been mapped using microsatellite markers. The DNA preparation protocol may also be used in rapid screening of potential transgenic mice.

摘要

小鼠中的自发性神经突变提供了研究哺乳动物中枢神经系统发育的有力工具。对小鼠神经突变体的研究有助于更好地理解神经系统发育所涉及的复杂机制。由于已鉴定出的此类突变较少,区分杂合子和纯合子的分子探针通常难以获得。此外,大多数神经小鼠突变体作为纯合子繁殖能力较差,因此有必要繁殖杂合子,并根据表型选择纯合突变后代。由于潜在的神经扰动在突变小鼠能够通过表型鉴定之前就已发生,杂合子繁殖的要求以及缺乏针对该突变的特异性分子标记阻碍了发育研究。简单序列重复(SSR)的近期鉴定和染色体定位,即遍布小鼠基因组的高密度DNA重复序列,为在小鼠中定位突变以及在表型出现之前对潜在突变体进行后续基因分型提供了工具。SSR很有用,因为这些标记具有多态性(综述见Weber, J.L.,基于简单序列串联重复长度变异的人类DNA多态性。载于:K.E. Davies和S.M. Tilghman(编),《遗传与物理图谱》。《基因组分析》,第一卷,冷泉港实验室出版社,纽约州普莱恩维尤,1990年,第159 - 181页[16]),也就是说,各个SSR的大小在不同小鼠品系中有所不同。通过聚合酶链反应(PCR)扩增SSR并通过聚丙烯酰胺凝胶电泳分离PCR产物后,可以轻松观察到小鼠品系之间PCR产物大小的差异。小鼠中的许多突变是在近交系中自发产生的,随后回交到不同的品系。经过多代同基因回交后,从原始突变品系保留下来的唯一DNA由突变基因和紧密连锁区域组成。因此,可以将突变品系与不同的小鼠品系杂交,并通过将突变表型与与原始突变品系大小相同的SSR相关联来定位突变。我们已经在回交小鼠品系中使用SSR对蹒跚(tg)、浦肯野细胞变性(pcd)和神经(nr)突变进行了定位。然后,区分突变体和正常品系的SSR可用于在突变表型出现之前对潜在突变幼崽进行基因分型。下面描述的方案几乎可以适用于任何同基因近交的突变体进行基因分型。在此,我们描述一种选择适合对潜在小鼠突变体进行基因分型的引物的方法以及一种快速的基因分型筛选方案。即使有区分突变小鼠和正常小鼠的SSR,同时对几只小鼠进行基因分型仍然是一项艰巨的任务。这主要是因为现有的用于制备PCR扩增DNA的方案耗时较长,需要包括酚抽提在内的几个纯化步骤。虽然有可用于无需有机抽提制备DNA的商业试剂盒,但这些试剂盒往往很昂贵。所描述的方案是一种使用干血斑的PCR分析来确定小鼠基因型的快速、廉价方法。该方案仅需要区分等位基因的PCR引物,因此对于那些已使用微卫星标记定位的小鼠突变,是快速鉴定潜在突变体的理想方法。该DNA制备方案也可用于快速筛选潜在的转基因小鼠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验