Lan K K, Lachin J M
Department of Statistics, George Washington University, Rockville, MD 20852, USA.
Lifetime Data Anal. 1995;1(4):361-75. doi: 10.1007/BF00985450.
This pedagogical paper presents a casual introduction to martingales, or fair gambling processes. Our objective is to describe the concept of a martingale and its application to common statistical tests used in the analysis of survival data, but without the mathematical rigor required for formal proofs. We use heuristic arguments to demonstrate that the logrank statistic evaluated over followup time is a fair gambling process, and introduce some mathematical notation and terminology along the way. We then employ the counting process approach to show that the logrank statistic computed over followup time can be expressed as the difference of two martingale transforms, and thus is a martingale. These ideas are first time introduced in the context of a discrete time process, and are then generalized to a continuous time process. With slight modifications, the same idea extends from the logrank to other weighted Mantel-Haenszel statistics computed over time.
这篇教学论文对鞅或公平赌博过程进行了简要介绍。我们的目的是描述鞅的概念及其在生存数据分析中常用统计检验的应用,但不涉及形式证明所需的数学严谨性。我们使用启发式论证来证明在随访时间上评估的对数秩统计量是一个公平赌博过程,并在此过程中引入一些数学符号和术语。然后,我们采用计数过程方法来表明在随访时间上计算的对数秩统计量可以表示为两个鞅变换的差,因此它是一个鞅。这些概念首先在离散时间过程的背景下引入,然后推广到连续时间过程。稍作修改后,相同的概念从对数秩扩展到随时间计算的其他加权曼特尔 - 亨泽尔统计量。