Suppr超能文献

哺乳动物线粒体遗传学:遗传、异质性与疾病

Mammalian mitochondrial genetics: heredity, heteroplasmy and disease.

作者信息

Lightowlers R N, Chinnery P F, Turnbull D M, Howell N

机构信息

Department of Neurology, Medical School, University of Newcastle upon Tyne, UK.

出版信息

Trends Genet. 1997 Nov;13(11):450-5. doi: 10.1016/s0168-9525(97)01266-3.

Abstract

Mammalian mitochondrial DNA (mtDNA) is present at high copy number (10(3)-10(4) copies) in virtually all cells of the body. The mitochondrial genome shows strict maternal inheritance and the vast majority of copies are identical at birth (homoplasmy). Occasionally, a subpopulation of mtDNA molecules carry a pathogenic mutation. When this heteroplasmic mtDNA is present during embryogenesis, it can lead to a variety of clinical symptoms predominantly affecting muscle and nerve, but also affecting other tissues. While the importance of mitochodrial heteroplasmy in human disease is unquestioned, we remain largely ignorant of many fundamental aspects of mitochondrial genetics. How do mutations arise and can they be repaired, what influences the segregation and fixation of heteroplasmic mtDNA, do levels of heteroplasmy fluctuate during life, is it possible to modulate these levels by external intervention and, finally, can we predict the segregation and transmission of a mutant genome? The aim of this article is to summarize and discuss recent observations that have addressed several of these fundamental issues and to reiterate how much we still have to learn about mitochondrial genetics.

摘要

哺乳动物线粒体DNA(mtDNA)在身体几乎所有细胞中都以高拷贝数(10³ - 10⁴个拷贝)存在。线粒体基因组呈现严格的母系遗传,并且绝大多数拷贝在出生时是相同的(同质性)。偶尔,一部分mtDNA分子会携带致病性突变。当这种异质性mtDNA在胚胎发育过程中存在时,它会导致多种临床症状,主要影响肌肉和神经,但也会影响其他组织。虽然线粒体异质性在人类疾病中的重要性毋庸置疑,但我们在很大程度上仍然对线粒体遗传学的许多基本方面一无所知。突变是如何产生的,它们能否被修复,是什么影响异质性mtDNA的分离和固定,异质性水平在生命过程中会波动吗,是否有可能通过外部干预来调节这些水平,最后,我们能否预测突变基因组的分离和传递?本文的目的是总结和讨论最近解决了其中几个基本问题的观察结果,并再次强调我们在了解线粒体遗传学方面还有多少需要学习的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验